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CHAPTER I

INTRODUCTION

The concept of the boundary layer was first introduced by Prandtl

(Ref. 35) so that approximate solutions could be obtained to the Navier-
Stokes equations which describe the behavior of viscous flow around

moving bodies. This concept allows one to divide the flow field around

a body into two parts. In the external part the effect of the viscosity

of the fluid is neglected and the Navier-Stokes equations reduce to the

Euler equations. In the other part of the flow field, which is near

the body, the viscosity has a strong influence; but other terms in the

Navier-Stokes equations can be neglected to give the classical boundary-

layer equations. As a result of the simplification of the Navier-Stokes

equations to the boundary-layer equations, the pressure change normal

to the wall across the layer is negligibly small. Therefore the pres-

sure in the boundary-layer equations is replaced by the pressure at the

wall as determined from the external inviscid fluid problem. With the

tangency boundary condition applied at the surface of the body, the

solution of the Euler equations therefore gives the pressure distribution

on the body, and hence the pressure gradient is known in the boundary

layer problem.

The presence of a boundary layer on a body effectively increases

the thickness of the body by an amount equal to the displacement thick-

ness as far as the external flow is concerned. Since the layer thick-

ness is small, the pressure field of the thickened body and of the body

proper are practically equal in subsonic and low supersonic flow. How-

ever, at hypersonic speeds the boundary layer cannot be neglected in

solving the Euler equations for the external flow about slender bodies.

Since the displacement thickness is a function of the pressure distribu-

tion along the body and the pressure distribution is a function of the

effective body shape, there is an interaction between the boundary-layer

problem and the external flow problem. Therefore, the Euler equations

and the boundary-layer equations must be solved simultaneously.

If a formal approach is applied to approximate the Navier-Stokes

equations (technique of inner and outer expansions as applied by

- 1 -
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by Van Dyke (Ref. 41) to a blunt body) the classical boundary-layer

equations are the first approximation to the Navier-Stokes equations

for the boundary-layer flow. The second approximation to the Navier-,

Stokes equations for the boundary-layer flow introduces the effect of

the displacement thickness. Also the following second-order effects are

introduced: longitudinal curvature, transverse curvature, slip, tempera-

ture jump at the surface, entropy gradient, and total enthalpy gradient.

In this paper only the boundary-layer flow downstream of the leading edge

of a sharp flat plate will be considered. For a flat plate the longi-

tudinal and transverse curvature effects are zero. Since slip and temp-

erature jump at the surface are mainly important near the leading ed.ge,

the boundary-layer flow is considered. only after a small distance from

the leading edge. For a sharp flat plate there will be a nearly straight

shock wave from the leading edge and hence the entropy gradient will be

small. The stagnation enthalpy is constant across the shock wave and

hence the total enthalpy gradient is zero. Therefore, the predominant

second-order effect will be the displacement thickness and this will be

the only effect considered in the interaction between the boundary-layer

and the external flow.

Before the interaction problem can be solved it is necessary to have

a satisfactory method to solve the boundary-layer equations with an arbi-

trtary pressure distribution. Since similarity methods are only applicable

for rather special pressure distributions and integral methods only give

approximate results, the numerical scheme of finite-differences is em-

ployed. Several finite-difference methods for the compressible laminar

boundary layer existed when this work started. Baxter and FlAigge-Lotz

(Ref. 1) modified the boundary-layer equations using the Crocco trans-

formation and then used an explicit finite-difference scheme to solve

the resulting equations. This method is not completely satisfactory due

to the small step-sizes required for ensuring stability and convergence

of the finite-difference scheme. Kramer and Lieberstein (Ref. 21) have

solved essentially the same Crocco transformed equations except an im-

plicit finite-difference scheme has been used to eliminate stability

problems. Still the step-size must be sufficiently small to ensure

convergence of the numerical solution to the exact solution. In their

2-



paper there are no comparisons with known results or any indications of

the validity of the method. A definite disadvantage of methods based

on Crocco's equations is the fact that the methods are not applicable

when the boundary-layer profiles have "overshoot." Velocity profiles

with overshoot occur for certain cases of heated walls with favorable

pressure gradient and this effect becomes even more important for boundary-

layer flows with helium injection. Due to the above considerations,

Flilgge-Lotz and Yu (Ref. 11) investigated an explicit finite-difference

scheme to solve the boundary-layer equations for the physical plane.

However, this method did not prove completely satisfactory, especially

at high Mach numbers and with a heated wall. Under these conditions

the step-size requirements were so severe that it was impossible to ob-

tain stable solutions.

Since the available numerical solutions of the boundary-layer equa-

tions were not generally adequate, a major part of this paper is con-

cerned with developing a new method. A satisfactory method will be one

which is not only stable, but one which has a grid size such that compu-

tation time is reasonable. Two main implicit finite-difference schemes

are developed. Since the boundary-layer equations are analogous to the

heat equation as far as stability is concerned, an implicit scheme using

the boundary-layer equations in the physical plane was used initially

in order to have stability as the heat equation indicates. One of the

better ways to solve the heat equation is the Crank-Nicolson method

(Ref. 8) which has a smaller truncation error than the implicit method.

This method actually is at the dividing point between the explicit and

implicit schemes, but is always stable for the heat equation. Due to

the complexity of the boundary-layer equations, it is impossible to as-

certain with assurance whether a Crank-Nicolson type of scheme would

always be stable. In order to improve the grid size requirements, and

thus have a practical method, the second difference scheme investigated

is of the Crank-Nicolson type.

Especially for hypersonic flows along insulated walls, the velocity

profiles vary almost linearly over a large portion of the layer except

at the outer edge where there is a large change in the velocity gradient.

For accurate results a particularly small grid size is required near the

- 3 -



outer edge. The immediate conclusion is that the grid size should vary

with distance from the wall, but this is rather inconvenient. Therefore,

the coordinate normal to the wall should be stretched to obtain smoother

profiles across the boundary layer by using the Howarth-Dorodnitsyn

transformation. This was done in the second scheme investigated.

In both of the implicit finite-difference schemes developed in this

report the derivatives in the boundary-layer equations are replaced by

difference quotients such that linear difference equations are obtained.

If the usual procedures are followed for replacing the partial differen-

tial equations, nonlinear difference equations are obtained. Hence, one

has the extremely involved problem of solving forty to sixty simultaneous

nonlinear algebraic equations at each step along the wall. In order to

make the implicit method feasible, the difference equations have been

linearized, which then requires the solution of a large number of simul-

taneous linear algebraic equations. These equations are of a tridiagonal

type and are well suited for solution on a digital computer. A wide var-

4.ety of boundary-layer problems has been solved to indicate the useful-

ness and accuracy of the two methods investigated. The problems used for

the verification of these methods either have exact solutions or have been

solved numerically by other procedures.

Since the above finite-difference schemes have been developed,

several numerical methods to solve the boundary-layer equations have

appeared. Wu (Ref. 42) has used an explicit finite-difference scheme to

solve the boundary-layer equations in the physical plane. The Howarth-

Dorodnitsyn transformation has also been used by him to improve the sta-

bility requirements for the compressible boundary layer. However, the

transformed equations as given cannot be used for a flow with a pressure

gradient; this fact is not clearly indicated in the report. Another

method which combines the Dorodnitsyn integration scheme with the

Pohlhausen approach, has been developed by Pallone (Ref. 34). The boun-

dary layer is divided into a number of strips (4 or 6) parallel to the

wall and then the boundary-layer equations are integrated from the wall

to the various strips where the velocity and enthalpy profiles have been

approximated by a polynomial. This method reduces the partial differen-

tial equations of the boundary layer to a set of ordinary first-order

- 4 -



differential equations with the coordinate parallel to the wall as the

independent variable. This method looks very attractive as the proce-

dures to solve ordinary differential equations are highly developed.

However, one would question whether this method converges to the exact

solution as the number of strips is increased, since a polynomial is being

fitted through a large number of points to represent the velocity and en-

thalpy profiles. For this situation, the polynomial can be greatly dif-

ferent from the exact profiles between the fitting points. An interest-

ing numerical method for solving the incompressible boundary-layer flow

has been presented by Manohar (Ref. 29) and the ideas can be extended

to compressible flow. The author develops from the boundary-layer

momentum equation and the continuity equation a third-order nonlinear

partial differential equation and then replaces the derivatives in the

direction along the wall by difference quotients. This results in a

nonlinear ordinary differential equation which must be solved across

the boundary layer at each step downstream. An iteration process is re-

quired for the solution since two boundary conditions are given at the

wall and one at the outer edge. The problem of iteration would become

even more difficult for the compressible boundary-layer equations as

there would be two boundary conditions at the outer edge.

A large number of people have investigated the displacement thick-

ness or pressure interaction between the boundary-layer and the external

flow. A complete discussion of this problem with a review of previous

contributors is given in Hayes and Probstein (Ref. 14). All of the prev-

ious methods of solution have either used perturbation or approximate

methods to solve the Prandtl boundary-layer equations with the pressure

gradient in these equations determined from the effective body shape.

In this paper the same problem is investigated using the new numerical

scheme developed for solving the boundary-layer equations. The tangent-

wedge formula is used as the solution to the external flow field and hence

the pressure distribution is known once he effective shape of the body

(geometric shape plus displacement thickness) is given. Starting with

the initial profiles across the boundary layer, the boundary-layer equa-

tions are solved with the pressure at the next grid line iterated until

the assumed pressure equals the pressure determined from the tangent-

-5 -



wedge formula. This process is repeated as one steps downstream until
the desired distance has been covered. A comparison of the numerical

results is made with the "strong" and "weak" interaction theories and
experimental results when such are available.
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CHAPTER II

MATHEMATICAL DESCRIPTION OF THE COMPRESSIBLE

LAMINAR BOUNDARY LAYER

In this chapter the equations for the laminar compressible boundary

layer are presented along with the necessary boundary conditions. The

equations are nondimensionalized, which results in using quantities of

the same order of magnitude better suited for computations. The

boundary-layer equations are also modified using the Howarth-Dorodnitsyn

transformation, which results in equations advantageous for numerical

computation when the flow is hypersonic. Since the boundary conditions

require that the enthalpy and velocity be known at the outer edge of

the boundary layer, the necessary formulas are presented to calculate

the exterior flow, provided the pressure distribution is known. Finally,

the characteristic values of the boundary layer (shearing stress, heat

transfer, and displacement thickness) are defined.

A. The System of Partial Differential Equations

1. Differential Equations. The flow of a compressible, viscous,

heat-conducting fluid is mathematically described by the continuity,

Navier-Stokes, and energy equations plus the equation of state, a heat-

conductivity law, and a viscosity law. For flows at large Reynolds

numbers, Prandtl (Ref. 35) has shown how the Navier-Stokes and energy

equations can be simplified to-the boundary-layer equations. If it is

assumed the Prandtl number and specific heat of the fluid are constant,

the classical boundary-layer equations for steady, two-dimensional,

compressible flow are

Continuity (p*U*)x* + (p*V*)y. = 0 (2.1)

dpe*
Momentum p*uAu*x + p*v*U*y =- + (i*U*y) (2.2)--

Y*

- 7 -



Energy r 2e1
p*u*i* + p*v*i*y = u e + *u*2 + 1 (.*i(2.3)

X* Y* ~dx* Y r *Y

Equation of State p* = p* ]R* T* =.71 p*i* (2.4)

Viscosity Law P* = f*(i*) (2.5)

The starred quantities have dimensions and the subscripts indicate par-

tial differentiation. The independent variables are the space coordi-

nates x* and y* which are parallel and perpendicular to the wall,

respectively. The dependent variables are the density p*, the velocity

components u* and v* which are parallel and perpendicular to the wall,

respectively, enthalpy i* and viscosity i*. Hence, we have a system of

five simultaneous equations and five unknowns.

The two original momentum equations became, after the boundary-

layer simplification, equation 2.2 and the following result

0 (2.6)

Thus the pressure in a direction normal to the boundary layer is practi-

cally constant. This result has been used in equations (2. ) and (2.3)

where the pressure at any x* has been set equal to the external pressure

p*. Also, from the equation of state the result is obtained that p*t*
e

is a constant, or the following relation can be written

P* = (P* i*)/i* (2-7)

The boundary-layer equations given above (2.1 - 2.5) are valid for

a curved wall provided there are no large variations in curvature, and

the boundary-layer thickness is small compared withthe radius of curva-

ture of the wall.

2. Boundary Conditions. In order to obtain a unique solution to

the partial differential equations of the boundary layer it is necessary

to satisfy the boundary conditions of the problem under consideration.
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These conditions are shown schematically below.

u*(x*,y*) = u*e e

V*i*(X*,) = i*

yy ,

The elo i an nhap tth deftebundarylayer aredeer

ar discse in SetReion Eo hscatr

u*\,Y)u v*(x*,o) =o•~ -- i x

or i (x,0)= (i* )

The velocity and enthalpy at the edge of the boundary layer are deter-

mined from the shape 1 of the body by using inviscid flow theory and

are discussed in Section E of this chapter.

The conditions of no slip and no suction or blowing are taken as

the boundary conditions at the wall. Hence, the two velocity compo-

nents u* and v* are zero at the wall. The third boundary condition at

the wall depends upon the thermal state of the wall. The temperature

of the wall can be specified, which means the enthalpy along the wall

is given. An alternate condition at the wall is to specify the heat

transfer which determines (6i*/6y*)wll . Finally, the parabolic charac-

ter of the differential equations requires that initial velocity and

enthalpy profiles be known at x*. These initial profiles are obtained
i.

from analytical results which are applicable to the problems under

consideration.

fIn the classical boundary-layer theory the shape of the body is
taken as the geometrical body. When interaction between the boundary-
layer and inviscid flow is considered, the shape of the body is the
effective body (see Chapter 5).
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3. Viscosity Law. A formula for the viscosity of a gas from the

standpoint of kinetic theory of gases is Sutherland's law, which is

T* + S*
=0 (T*/T) 3/ 2  (2.8)
T* + S*

The constant S* is taken as 216 or 198.6 in this work in order to com-

pare results obtained with other reports using these values. Based

on newer experiments the value of S* is 198.6.

Another viscosity law which is used in many analytical solutions

to the boundary-layer equations is the linear law, which is written as

= CT*/T* (2.9)

The constant C is usually determined by matching the viscosity at the

wall as given by the linear law and Sutherland's law. This results

in the following value for C:

T* + S*
T =V' e*,Te (2.10)C =T* + S*

w

Using the relation

* c* T(2.)
p

gives the above viscosity laws as a function of enthalpy.

B. Nondimensional Form of the Differential Equations and Boundary

Conditions

1. Nondimensional Quantities. It is advantageous to write the

differential equations and other relations of interest in nondimensional

form before numerical computations are performed. The following non-

dimensional quantities are defined so that all quantities are of the

same magnitude.

ISutherland's Hypothesis assumes that the molecules are hard spheres
with a weak attraction between them and this force falls off rather rapid-
ly with distance. The resulting viscosity law from kinetic theory has
the constant S* which is a suitable empirical value. This law is valid
over a certain temperature range (Ref. 19).
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a. Variables appearing directly in the differential equations:

u = 0

= 2

i- i*/C*2

P =*/L*

0 (2.12)

,P p*/(p* dj*2)
0

x x*L

with

i= 1/(7-1)

po =I

0 =

b. Quantities describing the behavior of the boundary-layer

flow:

T = T * fRTe*'/p c 2)_- .,/(Po C*)

q = q* R//(p* c*3)

s = spo (2.13)
0 00

T = c T*/c*
2

0C

h = h*t i'/(p* c* c*)
0/0

(2.13 cont'd. on next page)
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(2.13 cont'd)
k = k*/(p*

PO0

cp =C*/c*=1
p PO

Pr = c 1./k = c* */k*= Pr*
P p

R = R*/c *
P0

In the above quantities the subscript "o" refers to the conditions

at the stagnation point or reservoir of the exterior inviscid flow. The

length L* is some characteristic distance of the problem and the Reynolds

number, Re*, is defined by
0

Re* = c* L* p*/* (2.14)
0 0 0 0

2. Boundary-Layer Equations. Since the viscosity is a function

of enthalpy, the viscosity in nondimensional form can be written as

.= f(i) (2.15)

The derivative of the viscosity can be written as

=f i =f' (2.16)1 y di y Y

Using the nondimensional quantities as given in (2.12), we can write

the boundary-layer equations (2.1 - 2.3) as

Continuity (Pu)x + (pv)y = 0 (2.17)

Momentum PUU +pvu -' + fu + f' ui (2.18)
x  y e yy y y

2 f + ' 2  (2.19)
Energy pui + Pviy =uPe +f uy F yy P-r y

Equation of State P = Pii p/i (2.20)

- 12 -



Viscosity Law

ft = Ci where C = /

(Linear) fU = C i + S/T0

0- i/i .+ s/ Fl

~ f'iw 1 + S/T ! (2.21)

1 + s/T0  (i 3/2

(Sutherland) i/i 0 + S/T 0 )0

f f ~ 10  2 S/To) (2.22)

3. Boundary Conditions. The boundary conditions become the fol-

lowing when the nondimensional quantities are used:

a. Outer Edge of' Boundary Layer

y = e .9 > x u(xlye) = ue(x)

i(Xlye) = ie(x) (2.23)

*b. Wall

u(X,o) = 0

y 0X i> : v(x,o) = 0

i(x,o) =iw

c. Initial Profiles or (o)= i(22)

u(Xvy) = ui(Y)

i(Xi,y) = ii(y) (2.25)

-13-
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C. Howarth - Dorodnitsyn Transformed Boundary-Layer Equations

For some numerical calculations it is advantageous to stretch the

coordinate normal to the wall. The appropriate stretching is accomplished

by using the Howarth - Dorodnitsyn transformation

x

p- f pdy (2.26)

In order to transform the boundary-layer equations (2.17 - 2.19) the

following relations between the differential operators in the old and

new coordinates are usedi:

= + (2.27)

8x O

Also, a new velocity is introduced and is defined as

V = Tx u + Pv (2.28)

The boundary-layer equations (2.17 - 2.19) become the following in

the transformed plane:

uk +V =0 (2.29)

UU. + V uT = - p;/p + F uTi + F' i u1 (2-30)

2. F +F' 2
FIup/+ -i + i 2  (2.31)

ui+ V i Pup / + F U + Pr I * Pr T

where F = pu = Peie (V/i)

dF'

F' = pi - (p/i) (2.32)
Se edi
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Of course, the equation of state remains the same, but the viscosity

law gives the following relations:

(Linear Law) (2.33)
' 0 (2.33)

Pei e  1 + S/T O
- o( o +S/o (i/io)/2

(Sutherland Law) 
S

F1 S/ T (234)
2 (S/T0 + i/i

In order to determine the physical distance normal to the wall, y, the

transformation (2.26) is used to obtain the following:

y= (i/p)dn = (i/pe) (i/ie) dTj (2.35)

0 0

D. Exterior Flow

The following quantities will be given to describe the exterior

flow and fluid properties:

M, T0, 7, Pr, and S.

Since we know the above quantities, the following formulas for an

isentropic, perfect gas can be evaluated independent of the shape of

the wall on which the boundary layer is located.

1 /i+ -1 W (2.36)

u-IM/)7--2

p = (1/2')(l + -- 1 (2.37)

i = 1/(7-1) (2.38)
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T0 = T (1+ Y- M 2 ) (2.39)

The next exterior flow quantity that must be determined is the pressure

and pressure gradient along the boundary layer. The method to be used

to determine this pressure depends upon the problem under consideration;

hence, it will be discussed along withthe problems considered in later

sections.

Now the following formula for an isentropic, perfect gas can be

evaluated using the previously obtained results above.

1 - (p,/p.) "-
U = u 1 + (2.40)

L 2 b

S-12U2 (2.41)i e0 o -1/u e

1

Pe= (ie/i) (2.42)

T
Te  0 (2.43)

1 + Y1M2

2 e

e 1 + S/T0  (ie/io)3/2 (2.44)

ie/io So
Se o1 + /0

It should be noticed that the contribution of ve in equation (2.41)

has been neglected, which is consistent with the boundary-layer equations.

E. Boundary-Layer Parameters

1. Shearing Stress. Since the viscous drag of a body moving through

a fluid is dependent upon the shearing stress at the wall, this is one

of the boundary-layer characteristics of interest. The shearing stress

at the wall in the physical plane is

6u (2.45)
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and in the transformed plane is

T 6( (2.46)

Rather than the above parameter, usually the skin friction and Reynolds

number are combined to give one of the following characteristics to

describe the boundary-layer shear stress at the wall:

C2e fe # x (2.47)cf Rx =e Pe e Le

where

Cf= w 2 (local skin-friction coefficient)
p* u*
e e

U* X* P*

Re = - . (local Reynolds number)x 1.1
e

In the case of interaction between the boundary-layer and the external

flow., the following parameter is used to describe the skin friction

and is used for analytical results in Ref. 14.

2 M3

C',M 3 - 2 w (2.48)f 2

2. Heat Transfer. In aerodynamic heating analysis it is necessary

to know the heat transfer between the boundary layer and wall. The heat

transfer at the wall is related to the enthalpy by the following formula:

k i 01
qW 7 -Fy) 67y)(2.49)

p w w

Again, there are more conventional parameters to describe the heat

transfer at the wall and one is

e h e x e (2.50)
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where

St = h* (the Stanton number)
Pu * c*
e ep

h* q* (local heat transfer
T* - T coefficient)w ad

or

h q

iw - ad

ad ie (1eZ r

The adiabatic enthalpy, iad, is the value of the enthalpy at the wall

when there is no heat transfer (insulated wall). In order to obtain

the adiabatic enthalpy, it is necessary to know the recovery factor r.

For the laminar flow along a flat plate at constant temperature the re-

covery factor is taken as 0.845 when Pr = 0.72. For some other types

of flow the recovery factor is unknown. In these cases the Stanton num-

ber can be based upon the temperature at the edge of the boundary layer,

Te, and then all the adiabatic enthalpies, iad' are replaced by ie in

the above relations.

For the problem of interaction between the boundary-layer and the

external flow, the following parameter is used to describe the heat

transfer and is used for experimental results in Ref. (13)o

c 3 (2.51)
p u (i -i) if~e*

3. Displacement Thickness. For problems in which interaction be-

tween the boundary-layer and inviscid flow is important, it is neces-

sary to have the displacement thickness to determine the effective body.

The boundary-layer displacement thickness is defined as

p* u* dy* (2.52)
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A nondimensional displacement thickness is used in calculations as de-

fined below-

E7 e (l u dy 5* (2-53)

In the transformed plane the nondimensional. displacement thickness be-

comes

~S (~/e -u/ue) c1n (2.54)
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CHAPTER III

NUMERICAL SOLUTION OF THE BOUNDARY-LAYER

EQUATIONS WITHOUT INTERACTION

Since the partial differential equations governing the flow in the

boundary layer are of parabolic type, they can be solved stepwise down-

stream starting with initial velocity and enthalpy profiles and using the

boundary conditions. When the finite-difference scheme is employed., the

derivatives in the partial differential equations are replaced by dif-

ference quotients, and this results in difference equations. To con-

struct the difference quotients and equations it is necessary to divide

the flow field into a grid or mesh. First, the velocities and enthaply

across the boundary layer at the grid points which are a small distance

downstream from the initial profiles are computed using the velocities

and enthalpy given by the initial profiles. When the difference equa-

tions are solved in succeeding small steps downstream, the flow in a

region of the boundary layer can be determined.

There are numerous ways of constructing difference quotients, but

there are two general classifications: explicit and implicit. When

the explicit scheme is used, the resulting finite-difference equations

can be solved for the unknown quantities at one grid point at a time.

*However, to obtain stable numerical solutions, the step-size downstream

must be less than some critical value. With the implicit scheme the dif-

:ference equations for the unknown quantities at a row of grid points are

solved simultaneously. The downstream step-size for the implicit method

requires no restrictions to ensure stability; however, the step-size

must be sufficiently small for the numerical solution to closely approxi-

mate the exact solution. Obviously, the implicit scheme is mathematically

more complicated; however, whenthe difference equations are linear, a di-

rect method of solution (an algorithm) can be evolved. Due to the repe-

titious form of the explicit and implicit finite-difference calculations,

the solution is well suited for digital computers. The best method for

a computer is determined from the consideration of computation time

needed rather than the mathematical complication involved or the step-size

required. The implicit methods usually require more computation time per
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step, but allow larger step-sizes downstream than the explicit methods;

therefore, total computation time by either method can be a minimum for

a particular problem.

The essential points of the explicit method of Wu (Ref. 42) are

presented in this chapter for convenience of comparison with the impli-

cit methods. Also the equations are presented in a slightly different

form which is valid for boundary-layer flow with a pressure gradient.

The equations given by Wu are only valid for zero pressure gradient since

the density at the edge of the boundary layer has been assumed a con-

stant while applying the Howarth-Dorodnitsyn transformation. The ex-

plicit method is presented only for the solution of the boundary-layer

equations in the transformed plane (after the Howarth-Dorodnitsyn trans-

formation has been used). In the explicit scheme the derivatives normal

to the wall are replaced using quantities from the known profiles. There-

fore, the momentum equation gives the velocity, u, and the energy equa-

tion gives the enthalpy, i, directly at each grid point (except at the

edges) one step downstream from the known profiles. The quantities at

the edges of the boundary layer are known from the boundary conditions.

The velocity, V, is determined from the continuity equation and then

the above procedure is repeated at succeeding steps downstream. Wu

has indicated that the continuity equation in his method is treated in

a particular manner. The derivative u is replaced with a backward

difference quotient and the resulting equation is integrated using the

trapezoidal rule.

Two implicit finite-difference schemes are-presented in this

chapter for the solution of the nonlinear boundary-layer equations.

The first scheme is the usual implicit one which uses backward difference

quotients for the derivatives parallel to the wall and is called Method I.

The second scheme is of the Crank-Nicolson type which uses difference

quotients of a type to reduce the truncation error and is called Method II.

Both Methods I and II replace the derivatives normal to the wall in such

a manner that unknown quantities are introduced. Also, the products of

the derivatives are replaced with linear difference quotients to give

the possibility of linear difference equations. However, to obtain

linear difference equations, it is necessary to linearize certain terms
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obtained from the partial differential equations. In the process of

linearizing the momentum and energy equations, only the velocity, .u,

and enthalpy, i, appear as unknowns in the resulting difference equa-

tions. In both methods these difference equations are of the same form

with only the coefficients depending on which method is being used.

Therefore, the manner of solution is identical in both cases with the

appropriate coefficients used for the two methods. Since at the first

grid point away from the wall the two difference equations have six

unknowns and the boundary conditions at the wall can eliminate two

unknowns, there are more unknowns than equations. If the two differ-

ence equations are introduced for the next grid point, there will still

be more unknowns than equations. There will always be more unknowns

than equations as all the difference equations are added for the grid

points across the boundary layer until the outer edge is reached.

Using the boundary conditions at the outer edge with those at the wall,

one obtains a set of difference equations with the same number of un-

knowns as equations. This set of difference equations is actually a

rather special system of simultaneous linear algebraic equations. Due

to this special form an efficient method of solution for computers is

available; and using this method, the difference equations are replaced

by suitable relations useful for computation in this chapter. This

method essentially introduces six new quantities which can be determined

directly by using the boundary conditions at the wall and then stepping

across the layer. Then, using the boundary conditions at the outer edge

and these six new quantities, one determines the velocity, u, and en-

thalpy, i, directly by starting from the outer edge and proceeding to

the wall.

As in the explicit method the continuity equation is now used to

determine the velocity, v, or V, across the boundary layer. Two methods

are used to write the continuity equation as a difference equation. The

first one is the same as that used in the explicit method and is called

Method A. The second one replaces the derivatives ;ith difference quo-

tients such that the truncation error is of higher order and is called

Method B. By repeated use of the procedures outlined above and presented

in this chapter the boundary-layer flow at succeeding steps downstream

can be determined.
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In the methods of solution of the boundary-layer equations dis-

cussed above it has been assumed that the boundary conditions are well

defined. Of course, at the wall they are well defined if we assume no

slip as the velocity u will be zero. The velocity v or V is

usually taken as zero, except when there is fluid injection and in either

case no difficulties are introduced. Also, either the temperature or

heat transfer distribution at the wall can be easily handled. However,

at the outer edge the velocity and enthalpy are known from the inviscid

flow pressure distribution, but there is no definite location of the

outer edge. For the boundary-layer equations in the physical plane or

after the Howarth-Dorodnitsyn transformation the velocities and enthalpy

approach the inviscid flow values asymptotically. There are two methods

that can be used in applying the outer edge boundary conditions. One

way is to pick a line which is parallel to the wall and is sufficiently

far away from the wall that the outer edge boundary conditions are

valid there. Since the boundary layer is normally thickest at the down-

stream limit of the computation, an estimate must be made of this thick-

ness. This method is inefficient as too many steps are taken across the

boundary layer where the layer is thinner than the maximum thickness.

The second method, which is used in this paper, determines the edge of

the boundary layer by finding out when the quantities determined across

the layer become nearly a constant. By testing successive values of

the quantities calculated across the layer, it is assumed that the edge

is- reached when the two quantities are the same to a certain number of

decimal places. The number of decimal places required is easily ob-

tained after some experience, and this question is illustrated in

Chapter 4 with numerical solutions. With this method the number of

steps across the boundary layer will vary as the thickness varies.

It has been assumed that initial profiles of velocity u and v

or V and enthalpy i are known. Obtaining these profiles is a ser-

ious problem connected with all the numerical schemes for solving the

boundary-layer equations. Since only a local solution is required,

the problem is considerably simpler than solving the boundary-layer

equations for an arbitrary body. Some of the profiles available and

the onps used in this paper are discussed later in this chapter (Section D).
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Also discussed in this chapter is the stability of the difference

equations with respect to round-off error and the convergence of the

numerical solution toward the exact solution. The numerical formulas

used to determine the boundary-layer characteristics of shearing stress,

heat transfer and displacement thickness are also presented. Finally,

the chapter is concluded with the computer program used to solve the

boundary-layer problem.

A. Difference Quotients

In constructing the difference quotients, the sketch below is use-

ful for reference.

c f

_bk e_

a ,d

It is assumed that the functions H(x,y) and T(pc,y) are known at a, b,

c, but unknown at d, e, f. In the following sections the difference

quotients that replace the partial derivatives are given as are the

higher-order terms. The higher order terms are obtained using a Taylor

series expansion and are shown to indicate the truncation error intro-

duced when the first terms are used to replace the derivatives.

1. Explicit. In the explicit method the partial derivatives

are evaluated at the grid point "b" and the following difference quo-

tients are used:

ox A ",x H + .. (3.1a)
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Hc -H a  1 2
2A 1Ay H +... (3. lb)

62H H c - 2 b + Ha 1 V2
2 H + ... (3.1c)

yyy

All the quantities are evaluated at point "b" unless indicated other-

wise, and the truncation error is of order Ax or Ay.

2. Implicit.

a. Method I. This method.evaluates the partial derivatives

at the grid point "e" since an implicit scheme is desired. The partial

derivatives are replaced by the difference quotients as indicated and

all quantities are evaluated at point "e" unless denoted otherwise.

3H He- Hb 1
F =-Ax + tAxHXX+ ... (3.2a)

Hf Hd
-- A- i- y H +o.. (3.2b)

y" - 6 Ay yyy

S2 H  H f - 2H e + Hd  1 5Ay2 H +(.c

6"y 2 A2 Y2- yyyy+(.)

In the following, difference expressions for products of derivatives

are given. They are chosen such that in the products the unknown quan-

tities appear linearly and their use can lead to linear difference

equations.

Y)2) [(Ha - Hc) + 2(Hf - Hd)]

+ Ax 21j Ay 2 H H +.. (3.2d)
y y-yy
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)H T ((T -T ) (H Ha + (H H )(T -T ) + (Hc -H )(Tf- Td

+ Ax2 f~x Tx - Ay (T H + H T )+ .. (3.2e)
y yyy y yyy

The truncation error in the above difference quotients is of the order

of Axc or Ay 2and is the same as the explicit method.

b. Method II. This method evaluates the partial derivatives

at the grid point "k" since the Crank-Nicolson type of difference equa-

tions are desired. The partial derivatives are replaced by the follow-

ing difference quotients:

M H e - 1 2 (-a
Ax=75- - 2 Ax H x +..(3)

H 1 1 2 1 2

2 - 2H -H2Hb + Hc + Hd 2He + Hf).. Ax ~ A~~
y 2 2Ay2 a y1 V nw

(3.3c)

(Y) 2(Ha-H)(H-H1f) + -7-(H xy-Hy Hxx Ay y A H H +

-A ac d y y yyy

(3.3d)

6H T I " HH(-)
'F y A [(H a-Hc )(T dTf) ( df)a -c)

12 2HT -2
-S~ (y Txxy ~2 xy Txy + Y T)

1 2y (H T~ + T H )+. (3.3e)

- 26 -



The above difference quotients are chosen because the unknown quan-

tities appear linearly and can result in linear difference equations.

All the quantities are evaluated at point "k" unless indicated otherwise.

The truncation error in this case is of order x2 and Ay and is of

higher order in Ax than in the previous cases.

B. Difference Equ&tions

The following sketch shows the designation of mesh points in the

physical plane.

y

n+2

n+l

m, nn

n-i -
m-2 m-i m. m+l m+2

XAX- y = (n-l)&y

n=3- t
n=2

n=l 1 .

If the Howarth-Dorodnitsyn transformation is used, one has a similar
grid in the transformed plane; but x and y are replaced by and

T1, respectively. It is assumed that the velocities, u and v or V,th
and enthalpy, i, are known at the grid points in the m column and un-

known at the grid points in the (m+l). coiumn.

1 This notation is different from that which has been used in pre-
vious reports (Ref. 1 and 11) on finite-differnce solutions of the
boundary-layer equations. This change in designation of mesh points
was instituted in order to be consistent with the subscript notation
used in the Burroughs 220 Computer program.
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1. Explicit. The transformed boundary-layer equations are used

for the explicit method since the stability requirements are less severe

than when the physical-plane equations are employed. The boundary-

layer equations (2.29 - 2.31) become the following when equations 3.1

are used:

u+l,n u,n + A I V pe/p + Fri u + F (3.4)Um, n / n m,n

m+ln imn + L UP/ +Fu.up + + 1 Frum,n Pr T ) m, n

(3.5)
V : + (Um+l,n - u n + um+l,n-i " u n-l)
m+l,n -m+l,n-l m - m

(3.6)

The partial derivatives at (mn) have not been actually replaced in

order to keep the notation as simple as possible. However, they are

readily determined from equations 3.1 since they do not involve any

unknowns.

2. Implicit. The two implicit Methods I and II are quite similar

and will be discussed together. As indicated previously, the derivatives

in the boundary-layer equations are evaluated at the points "e" and "k"

in the two methods and correspondingly the partial differential equations

must be evaluated at the same place. Notice in equations 2.18 and 2.30

that there are terms of the following form:

where "i" is "e" or "k", depending on the method. If the derivative

is replaced by the difference quotients as given by (3.2a) or (3.3a),

the above expression becomes

T i(8-
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Expressions of this type will be nonlinear in the unknowns and, of course,

the diffeience equations will be nonlinear also. Using a Taylor's ex-

pansion, we can write Ti as

T T+Ax 6T (i-e)
i b x b+

T -61i T b+ A(7) + (io)i :b 2 )b

Therefore, in order to have linear difference equations, the original

expression is written as

T i (HiAX Tb (i~

where terms of order Ax have been neglected as indicated in the above

expansions.

Using the above linearization technique and the difference quo-

tients (3.2) and (3.3), we can write the momentum and energy equations

(2.18 - 2.19) or (2.30 - 2.31) of the boundary layer as the following

difference equations:

(2 < n<N-1 and m>l)

A um+l,n-l + B1 um+l,n + C1 Um+l,n+l +1 Ju+l,n-1
m,n m,n m,n m,n

+ E1 im+ln 1 im+l,n+l = G1 (3.7)m n mj n m,n (37

A2 Um+l,n-1 + B 2 m + 2 ml,n+ +  D2 +m+ln-1
m, n m,.n m, n m. n

+ E2 im+l,n-i + F2 im+l,n+l = G2  (3.8)
m n m3 n m n

where the coefficients vary, depending on,,hether Method I or II is

being used. The coefficients for Method I, which result from equations

(2.18 and 2.19) with equations 3.2, are the following:
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Method I (Physical Plane)

AI = L, (-pv + f' i- 2 (3.9a)
m, n

B1  = u + -- (3.9b)m,n -

cl =L 1 .(Pv- f' i - ) (3.9c)
1m, n y I

D1  = f' L1 Uy (3.9d)
m n

E1  = 0 (3.9e)
mn

F1 = - f' L, Uy (3.9f)
mn

2 f
G = Pu 2 Ax (P; + f u i ) (3.9g)

ifm, nYY

and

A2 =  2f L uy (3.10a)
m, n

B2  = o (3.1Ob)
M. n

c2 =- 2f h UY (3.1oc)
m, n

2f' 2f
2 L1 (-v y pr y (3.10d)

m, n

E = PU 4fL 1

2  : u + - (3.10e)
M. n

F 2 2f' 2f'(.0'
F2  = LI (Pv- iy 2f- (3.10f)

m,n Pr. PrAy

, 2 f' 2
G2  = pui + Ax (u Pe y 319

mnY-- i ) (3.10g)

n e y30ry
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where

L = Ax/(2Ay) (3.11a)

y = (im,n+ 1 - im,nn1l)/(2Ay) (3.11b)

y = (Um,n+l - Um,n-1)/(2) (3.11

In the above relations all the quantities are evaluated at the grid point

(m, n) due to the linearization. Without the linearization all the un-

subscripted quantities would be evaluated at the grid point (m+l,n).

The coefficients for Method II, which results from equations

(2.30 and 2.31) with equations 3.3 are the following:

Method II (Transformed Plane)

AF F1 (3.12a)
m, n

D = 2u + - (3.12b)
m3n

C1  = L2 (V- F F' i ) (3.12c)

mn
D1  = F' L2 u,, (3.12f)

ann

A2 = 2FL 2 u (3.13a)

m, n

E1  = 0 (3.12e)
m, n

B2  -0u (3. 31b)

m, n
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C2  -- 2L 2 F (3.13c)

D2  = L2 (_ V- _r + F i) (3.13d)
m3 n

E2 = 2u + - (3.13e)
mn

F = L 2 2F (3.13f)F2  = 2 ( V PrA, r- '

m,n

G2  = 2u imn + At (2upe/p - V i + P (3.13g)
m, n

where

L 2= At/(2 An) (3.14a)

i = (im,n+ - im, (2y )  (3.14b)

u = (um,n+1 - Um,n-i)/(2n) (3.14c)

i Y = (im, n+1 - 2im n + im, n.1 )/An2  (3.14d)

nn = (Um,n+l " 2um,n + Um,n-l ) / A 2  (3.14e)

In the above relations all the quantities are evaluated at the grid point

(m,n) due to the linearization. Without the linearization all the unsub-

scripted quantities would be evaluated at the grid point (m+l/2,n)o

Two methods are used to replace the continuity equation and will

be called Methods A and B. The following sketch of the grid will be

useful in the description of these methods of writing the difference

equations.
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mrn+l m+! n+1

mf n m+l, n

"'h"

m, n-1 re+l,n-1

Ax

X

Method A evaluates the derivatives in the continuity equations at point
"g" and uses the backward difference scheme for x-derivatives. The dif-

ference quotients are

(pv)m+l - (pv)m+ln-i 1 2
(pv) y AY + m.A2n(Pv)- +

(Pu)x =- [(pu)m+l,n " (Pu)mn + (Pu)m+l,n-l(Pu)mn-I)

1 Ax(pu) + ... (3.15)

The continuity equation (2.17) becomes the following when' the above

difference quotients are used.

(Physical Plane - Method A)

S(pv)m+n - (pu)m+l,n-(u)m,n + (Pu)r+l,n-l-(P)m, n-i

(3.16)

- 33 -



For Method B the derivatives are evaluated at point "h" as shown in the

preceding sketch. The difference quotients used in this method are

(pu)x 1 [(Pu)m n (pu) + (pu) (pu) 

,2Ax PUmn m+l, n-i mn-]

(1U(pu +1 2 (Pu) + .. (3.17)

(pv)y.- () mn - (pv)m,n-1 + (pv)m+l,n - (pv)m+l,n-1]

1 2. 1 2
+ x (pv)xxy + 2 AY (pv) + .o

It should be noticed that the truncation error in these difference

quotients is of higher order in the x-direction than in Method A. Us-

ing the above difference quotients gives for the continuity equation

(2.17) the following:

(Physical Plane - Method B)

(pv)m+l,n  (Pv)m+l nl- (pv)m,n + (pv)m,n_1
(3.18)

Ay- [ _(u)m1  - (Pu)mn + (u) m+lnl - (Pu)m n- 1 ]
1 x (P~~ , n MU) ~ l P-

The continuity equation (2.29) in the transformed plane becomes the

following for the two methods discussed above.

(Transformed Plane - Method A)

Amin Vmini n u~~ - umn+ Um+l,n. 1l -u n.)Vm+l,n = Vm+l,n-i 2Ag'-- (m+l,n Umn Mln m,n-

(3.19)
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(Transformed Plane - Method B)

Vm+l,n = Vm+l,n. 1  V, n + Vm,n. I

(3.20)

AT' (Um+l,n Um,n Um+l,n-l um,n-l)

C. Method of Solution

In order to solve the difference equations either in the explicit

or implicit form, it is necessary to have the boundary conditions in a

form suitable for numerical computation. The velocity and enthalpy at

the outer edge of the boundary layer are known in the case where there

is no interaction and from (2.23) become

Um,N = ue(x) (3.21a)

im,N = ie(X) (3.21b)

where N is the number of grid points across the boundary layer. At

the wall the velocity is zero and the other boundary condition depends

upon whether the temperature of the wall or the heat transfer is speci-

fied. These boundary conditions are written as

Vm,1l = 0 (3.22a)

uml = 0 (3.22b)

iml = iw(x) (3.22c)

or

qw =Pr(V)w 1A Pr(r, 1 m) (3.22a)

The approximation for the above derivative in (3.22d) is rather crude

and this point will be discussed later when an insulated wall is con-

sidered. The other condition that must be given is the velocity and
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enthalpy profiles across the boundary layer at the start. The determin-

ation of initial profiles is considered in Section D.

1. Explicit Difference Equations. The method of solving the

explicit difference equations (3.4 - 3.6) is apparent. Since all the

quantities on the right side of the equations are known from the ini-

tial profiles, the velocities and enthalpy are calculated directly at

each grid point across the boundary layer. After starting at the wall

the calculations proceed until the velocity um+l,n and enthalpy im+l,n

are sufficiently close to the velocity u and enthalpy i determinede e

from the external flow. Then the profiles across the boundary layer

are calculated at succeeding steps downstream until the desired distance

is obtained.

2. Implicit Difference Equations. The method of solving the im-

plicit difference equations (3.7) and (3.8) is the same for both impli-

cit difference Methods I and II. Of course, the coefficients in the

difference equations will depend upon the method being used. Obviously,

the difference equations cannot be solved directly as in the explicit

case, but one has the problem of solving a large number of linear alge-

braic equations, The system of algebraic equations is of a special

type since a large number of the coefficients in the complete system

are zero. Because of the special form of the equations, the following

relations exist (see Appendix B, especially equations 14b):

u K(l) + K(2) U + K(3) i (3.23a)
m+l,n-i m+l,n-l m+l,n-l m+l,n m+ln- m+ln

(1 + L (2) 11 (3) (32b
im+ln (),n-i m+l,n- m+l,n + (i; l,n-i m+ln (3.23b)

When the above are substituted into the difference equations (3.7) and

(3.8), the following is obtained:

B* u + * i ~ G* - C u - F
1 =m+ln 1m m+ln - 1 1 m+l,n+l 1 im+l,n+lBmjn Umln+Em,n imrn a,n m,n m,n

(3.24a)
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B* u + E* i -*c uF i
2 mnm+1,n 2 m.nm+1,n 2 -~ 02 Unm+1,n+1 2 M m+1,n+l

(3.24~b)

where

f =B~ + A1  K(2 + D L(2 (3.25a)

m,n M,n M,n m,n

B* = B2  + A2  K 2 + D2  L 2 (3.25b)
m~n mn M~nm, n

1* =1 A1  K() D L(3 (3.25c)
M.,n in,n M,n M,n

E2 =+,- 2 +mAK(),nD-(3 (3.25d)
2M,,n 2M,n 2m,n mln1 2M,n J~~

G* = G, - A l) - D (i)(32e
1. A1 Mn +n.,n-1 ~ 1  L~nm+i,n. (.2

m~n m,n m,n

Solving equation (3.24a) and (3.24+b) for umlnand im~l1  gives

m+1.,n m +1,n m+1,n m+1,n+1 m+1,n m+1,n+1 32a

m+, L(1) + (2) u (3) (32b
i~~ m+1,n -m+l,n Um+l n+l + m+l,n im+1,n+1 32b

where

K(l) = A (j * - G* E*)(.2a
mln (G 2 2 1 m,,n(32)

K (2) = A (E* C - C E*) (3.27b)
m+1,n 1 2. 1 2 M.,n
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(Eln F2 - 1  2 m,n(32c

L =n (B* G2* - B* I~~ (3.27d)

L 2) =A (C1 B* - B* C2m~ (3.27e)

L() =A (F1 B* - B* F2) (3.27f)

where

A = l/(B* E* - E* B*)m~

After we apply the boundary condition at the wail (3.22b), equa-

tions (15B) in Appendix B require the following:

K(1) = K (2) K(3 = o (3.28)
m~l m,1 m,l-

Similarly, the boundary condition (3.22c) and equations (15B) give

L~)- i
IM~l wSpecified wall temperature (3.29)

L (2) L3
m.1 1 ~ 0.

while boundary condition (3.22d) gives

L~l) AY Lw
m,1 P

L (2) 0 Specified heat transfer (3.30)
m, 1

L(3 1M) 1
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Now the necessary relations exist to solve the implicit finite-difference

equations, but the method needs to be clarified.

The quantities K , L(K(2)1 )  (2) a dL (3) can be de-m, n m, n m, n m,n' Lm,n) n myn

termined across the boundary layer by using the following procedure:

(a) Perform the following steps at the first point away from

the wall-

(1) Calculate A, B, C1, Dr) El , F1, and G1 from
equations (3.9a -3.9g) or (3.12a - 3.12g).

(2) Calculate A2, B2, C2, D2, E2 , F2, and G2 from

equations (3.10a - 3.10g) or (3.13a - 3.13g).

(3) Using the resultt from the previous steps and the

boundary conditions (3.28) and (3.29) or (3.30),

calculate Bl*, B2 *, El*, E2 *, Gl*, and G2* as

given by equations (3.25a - 3.25f).

(4) Using previous results, calculate K(l), K(2),(1)\ (2) (3

K(3), L(1 ), L (2 ), and L(3 ) with equations
(3.27a - 3.27f).

(b) Now the procedure outlined in step (a) can be repeated at the

second point away from the wall using results obtained at the

first point. The above procedure is repeated until the boun-

dary layer is traversed and all values of K(l), K(2), K(3),

L(l), L(2), and L( 3 ) are determined,

Now the velocity, u, and enthalpy, i, are determined across the

boundary layer, starting at the outer edge. Knowing the K's and L's

across the boundary layer, we can use equations (3.2 6a) and (3.26b) to

solve for the velocity and enthalpy utilizing the boundary conditions

(3.21a) and (3.21b) at the outer edge.

As yet the continuity equation has not been required in order to

calculate the velocity, v or V, due to the linearization of the dif-

ference equations. Before the computations can proceed downstream,

the velocity, v or V, must be determined across the boundary layer.

Starting at the wall calculate the velocities v or V from equation

(3.16) or (3.18) for the physical plane and equation (3.14) ok (3.20)

for the transformed plane, respectively. Now the velocity and enthalpy

profiles can be determined at succeeding steps downstream.
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D. Initial Profiles

In most of the problems solved using numerical schemes, initial pro-

files are obtained from similarity solutions of the boundary-layer equa-

tions. However, Wu (Ref. 42) has proposed the following type of initial

profiles for leading edges or stagnation flow:

(1) The velocity u and enthalpy i are freestream values at all

the grid points across the layer except at the wall.

(2) At the wall the velocity u is zero and the enthalpy corres-

ponds to the wall temperature.

(3) The velocity V is assumed zero at all the grid points across

the boundary layer.

Since this method would be very advantageous for starting numerical

computations, it has been investigated further.
1

To study the possibility of using the Wu type initial profiles, the

boundary-layer flow from the leading edge of a flat plate at Mach number

9.6 was solved using the explicit method. A lLnear viscosity law was

used so that the results could be compared to similarity solutions which

were obtained from Low (Ref. 26). The displacement thickness of the

boundary layer has been used to show the influence of using Wu type ini-

tial profiles on the numerical solutions. The displacement thickness

along a flat plate for two sizes of mesh normal to the wall, All, and

two sizes of mesh parallel to the wall, At, is shown in Fig. la. It

seems that the numerical solutions can be close to the exact solution

at a sufficient distance downstream if the proper step-sizes are chosen.

However, simply reducing the step-sizes does not always improve the re-

sults.

In the Wu type initial profiles it has been assumed that V is

zero at the leading edge, but the similar solution gives V equal to

infinity. From physical consideration the assumption V = 0 is reason-

able; 'but from the mathematical point of view, the similar solution

1 It should be mentioned that such profiles are not correct for stag-

nation flow, e.g., as the mesh size approaches zero. For incompressible

flow at a stagnation point the displacement thickness is finite, while
the Wu profiles would give zero for this quantity.
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Figure 1. Flat Plate Flow with Wu Type Initial Profiles at the
Leading Edge
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is correct. In other words, the boundary-layer equations are not valid

near the leading edge, which is well known. Therefore, in the next

test the velocity, V, for the initial profile was assumed at all grid

points across the boundary layer equal to the value given by the simi-

larity solutions at the outer edge and at the first step from the lead-

ing edge. At the wall the velocity V was assumed zero as usual. The

influence on the displacement thickness by assuming V finite at the

leading edge is shown in Fig. lb. In this case the numerical solution

agrees closely with the similar solution.

From the above discussion it is concluded that Wu type initial

profiles can give reasonable results if the proper mesh sizes are chogen.

Even better results are obtained when the velocity V is given the

appropriate value rather than zero. Since it is difficult to ascertain

the required mesh sizes and velocity V, the Wu type initial profiles

must be used with extreme care.

To obtain initial profiles it seems better to use similar solutions

rather than the Wu type of initial profiles. There are three types of

initial boundary-layer profiles which should be sufficient for most

practical problems. The three types are flat plate, wedge, and stagna-

tion flow. For a complete discussion of similar solutions of the boun-

dary-layer equations, see Chapter 8 of Hayes and Probstein (Ref. 14).

For supersonic speeds with an attached shock wave, the flat plate and

wedge profiles are the same (i.e., constant-pressure profiles). For

the case of Prandtl number 0.72 and the linear viscosity law, the ini-

tial profiles are easily obtained from Low (Ref. 26). When the Sutherland

viscosity law is used, the initial profiles can be obtained using Crocco's

method of solution as applied by Van Driest (Ref. 4o).

For two-dimensional stagnation-point flow the profiles that are

available are based on the assumption that Prandtl number is one or a

linear viscosity law is used. Since the boundary-layer equations for

the stagnation point reduce to two simultaneous nonlinear ordinary dif-

ferential equations, it is possible to solve these equations numerically.

Because these equations are of a "two-point boundary-value problem"

type, they are tedious to solve, but the Sutherland viscosity law and

Pr = 0.7 can be used.
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In the verification of the implicit finite-difference scheme,

initial profiles for the flow along a flat plate are used. A linear

viscosity law is assumed since the profiles are easily obtained from

Low for this case0 In order to obtain the profiles in the notation of

this paper, certain relations must be established with Low's results.

Where the derivation of these relations become involved, the procedure

is presented in Appendix A. The necessary relations to obtain the

initial profiles in the physical plane are the following:

Y = Q g(%o) (3.31a)

1
2 - f' (i ow) (3.31b)

i ie g' (Tiow) (3o31c)

V 7e [f'(ow) g(low) -f (T'Low) g)(row)I (3.31d)

where

(W + -1 M2 Ir(7Low) + K Is(Iow) (3.32a)

g,(%ow
) =1Lo 

+ Y-1- 2

2-1 M;e r(%ow) + K S(row)  (3.32b)
g' ( -ow) = 1 + 2M r1w

K T w - - ! m2 (o.8477] (3.32c)

.,eXC
Q = 2 e (3o32d)

The relations used to obtain the initial profiles in the transformed

plane are the following:

= Pe Q T1ow (3.33a)

U f(nLow) (3.33b)

i = ie g' (nLo) (3.33c)
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P e e
V I [low '(low) - f(nlow )]  (3.33d)

Some of the initial profiles are given in Chapter 4 along with the

numerical problems solved.

E. Stability and Convergence of the Difference Schemes

All of the difference schemes presented in this paper are consistent

or are a formal approximation to the partial differential equations. A

scheme is consistent if the difference between the partial differential

equation and difference equation goes to zero as the mesh size approaches

zero. In other words, the truncation error goes to zero as the step-

sizes go to zero, which is easily seen from the difference quotients

used in the various schemes. The faster the truncation error goes to

zero, the more accurate is the difference approximation and more likely

is the numerical solution to be a good approximation to the exact solu-

tion. However, consistency does not imply that the solution of the dif-

ference equations tends to the solution of the partial differential equa-

tions as the step-sizes go to zero. For this to be true the difference

equations must be convergent. For equations of the boundary-layer type,

there is no completely satisfactory mathematical analysis to show the

convergences of the difference schemes. Fliigge-Lotz and Yu (Ref. 11)

have made the most significant investigation of the convergence of the

explicit difference scheme. The convergence of the difference equa-

tions can be studied numerically by varying the mesh sizes. This type

of verification of the convergence of the difference schemes is pre-

sented in Chapter I'4 along with the numerical examples solved.

Since there are round-off errors in the computations, the numeri-

cal error between the exact and numerical solutions of the difference

equations must be investigated. This problem is referred to as the

stability of the numerical scheme. By making several assumptions and

using the von Neumann method of stability analysis, we can obtain an

approximate estimation of step-l-size for stability. Previous experience

(Ref. 1) indicates that the momentum equation dominates in determining

the stability of the boundary-layer equations. Therefore, only the
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momentum equation will be considered for the stability of the boundary-

layer equations. If the pressure gradient term is assumed zero and a

linear viscosity law is used, the momentum equation (2.30) in the trans-

formed plane becomes

uu + V u1 = F u (3.34)

Next it is assumed that the mesh is sufficiently small so that the co-

efficients in the above equation vary slightly and are considered con-

stants. The above equation then can be written as

uu+ VU =Fu (3.35)

where the bars indicate the quantities are to be considered constants.

If the derivatives are replaced with the explicit difference quotients

(3.1) and the von Neumann analysis is applied, the usual stability re-

quirement is obtained

Stability Parameter = 2 F < 1 (3.36)
u ATI 

2

The bars have been omitted because the local values of the quantities

will be used. Since the velocity is smallest near the wall, the first

grid point away from the wall will give the largest value for the left-

hand side of the inequality (3.36).

The flow along a flat plate at Mach number 9.6 has been solved

using the explicit method with a grid size large enough to cause in-

stability. The calculated displacement thickness is given in Fig. 2

where the instability occurs at approximately E = 0.05. Also shown in

this figure is the stability parameter (3.36) at the first grid point

away from the wall. The value of the stability parameter is approxi-

mately two when the instability occurs, rather than one as relation

(3.36) requires. Besides the assumptions mentioned previously, some

of this difference can be attributed to the fact that the known boundary

conditions at the wall improve stability (see Ref. 15).
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Since the simple analysis above gives a reasonable estimate of

stability requirements, the same type of analysis is now applied to the

second implicit difference scheme. Substituting the difference quo-

tients (3.3) into the momentum equation (3.35) gives the following dif-

ference equation:

al Um+l,n- l Um+l,n + um+l,n+l + d um,n-1 + e1 Um, n+f Um,n+l =0

(3°36)

where

a1 = d1 = -r -s (3.37a)

bI = 1 + 2s (3.37b)

c 1 = f 1 = r-s (3.37c)

e 1 = -1 + 2s (3.37d)

and

r V (3-38a)
47u AI

T A 2(3.38b)

2u ATI

Applying the von Neumann method of stability analysis, we substitute

u = e iY = e x ei (n) y into equation (3.36), and letting

= e ,( x  gives

d eiAY + e + f eiPY

a1 e Ay + b1 + c1 eip y

e + (dl+fl) cos PAy - i(dl-fl) sin PAy
: - (3°39)

b + (a1 +cl) cos Ay - i(al-cl) sin PAy

Using relations (3.37), we can write the above as
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1 + 2s(l- cos Ay) + i 2r sin pAy

The above can be written in the following form:

(- 0)(l + 0) - 2 - i2e (31)

(+ 0)2 + e2

where

= 2s(l - cos pAy) (3 .42a)

6 = 2r sin pAy (342b)

The condition for stability is

Id <1 (3.43a)

or Id 2 < i (3.43b)

From equation (3.41) the following is obtained:

i1d2 = (1-0)2 (1+0) + 2e2 (i+0) + e4
(1+0) 2 (1+0)2 + 2e2 (+,0)2 + e4

If we consider the case when u > 0, then 0 > 0. If 0 = O, then equation

(3.44) becomes

for all e. If 0 > 0, then the following relations exist:

2 > (1-0)2 (3.45a)

(+0) 2 > 1+02 (3.45b)

Using these relations with (3.44), it is easy to see that

I~12 <1
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for all e when > 0. Therefore, the implicit Method II with u > 0 is

,stable regardless of the mesh size as shown in the above analysis. The

numerical examples investigated in Chapter IV corroborate this result.

F. Formulas for Shear Stress, Heat Transfer, and Displacement Thickness

The formula for the shear stress in the physical plane at the wall

has been presented in equation (2.45), but now it is necessary to ex-

press the derivative in this expression numerically. The velocity u

near the wall may be expressed with sufficient accuracy as

u=7 1 y+ 7 2 y2 + 7 3 y
3  (3.46)

Taking the derivative of the above with respect to y and setting

y = 0, we can write the formula for shear stress at the wall (2.45) as

TW = w Y1 (3.47)

The value of 71 can be determined by evaluating equation (3.46) at the

three grid points nearest the wall and solving the three resulting equa-

tions for 7 . When the result for Y1 is substituted into equation (3.47),

the following is obtained for the shear stress at the wall in the physi-

cal plane:

Tw = TT (18 u2 - 9 u3 + 2 u4) (3.48a)

An expression for the shear stress at the wall in the transformed plane

is obtained in a similar manner from equation (2.46) and is

F
T w (18 u2 - 9 u+2u4) (3.48b)Tw  7- 3 u4

The formula for the heat transfer at the wall has been presented in

equation (2.49) and again it is necessary to replace the derivative.

If the same procedure is followed as above, except the velocity is

replaced by the enthalpy in all the expressions, the following formula

is obtained for evaluation of the heat transfer at the wall in the

physical plane:
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wI

w --8i+ i-2 1 ~ (3.49a
qw-6- -P (1l - 18 i2 + 9 3 '4)

The corresponding expression for the transformed plane is

F

qw Pr (11 il - 18 i 2 + 9i 3  2 i4) (3.49b)

In order to determine the displacement thickness as given by equation

(2-53) a trapezoidal rule of integration is used. Since u is zero at

the wall, the dimensionless displacement thickness in the physical plane

can be written as

* = Ay + 1 i-e  (3.50a)

Using the trapezoidal rule again, we write the displacement thickness

in the transformed plane as given by equation (2.54) as

N

An w /(2ip) + P- (3.50b)

To determine the displacement thickness, a better integration method is

Simpson's rule which gives the following relation in the transformed

plane:

An iw +4 i u u7-3- + ' + "P i e ) (3.50c)

e A eie e e e) 2J 2j-i

G. Computer Program

Due to the lengthy and repetitious nature of the implicit finite-

difference schemes for solving the boLudary-layer equations, the problem

was programmed for the IBM 650 and Burroughs 220 digital computers. The

flow diagram for the basic computer program for the explicit difference
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scheme without interaction is given in Fig. 3a. For the implicit finite-

difference schemes the explicit subroutine for um+ln and im+l,n, as

indicated in Figure 3a, is replaced by the subroutine for computing

um+l n and im+l n using the implicit scheme (see Figure 3b). The flow

diagram can be divided into many subroutines, as shown in the diagram;

however, some operations are not as clearly separated as indicated.

Given below is the computation procedure which will relate previous

formulas with the flow diagram.

1. Program Constants. This consists of computing various parameters

which are used frequently but do not change. Also computed are

u ,p, io, and To from equations (2.36 - 2.39).

2. Compute pe and p' . The pressure and pressure gradient are

computed at the points m+l. The formulas or values for these quan-

tities are given under the specific problem being solved.

3. Compute Exterior Flow Quantities. The exterior flow quantities

Ue, iey Pe, Te, and 'e are computed using formulas (2.40 - 2.44).

4. T < 0. This is a check to be sure that there is no laminarw
separation.

5. Compute um+1 n and i m+1 n . The velocity and enthalpy across the

boundary layer at mesh points m+l are calculated. For the method

of solution and equations used, see Chapter III, Section.Q,2.

6. Test for Edge of Boundary Layer While Computing u and i. The

following test that is described is applicable only when the veloc-

ity and enthalpy of the exterior flow at any x are independent of y.

In the implicit calculation procedure it is necessary to know how

far to calculate the K(i)'s and Li's (i = 1,2,3) across the boun-

dary layer. The typical variation of KM and L~l) across the

boundary layer is shown in Fig. 4. At the outer edge of the boun-

dary layer these quantities become independent of the distance

away from the wall. Therefore, to stop the calculation of the

KM's and Li's (i = 1,2,3) after the boundary layer has been

transversed, two consecutive values of K l) are compared to see if

the difference between them is less than some small quantity e.

The value of E is determined by the desired accuracy of the
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NOTE: Explicit Subroutine
Compute Program Set n = 1 for uM+l,n and

Constants im+l,n
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and p I - Add ue and ieem+l Pem+l at Edge of
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Compute Exterior Compute
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NoN
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T <0 Compute 5"* andYe

Yes Wall Quantities

SStop
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Figure 3a. Flow Diagram for Explicit Finite-Difference
Schemes Without Interaction
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Figure 3b. Subroutine for Computing un+, n  and im+l,n
using the Implicit Finite-Difference Scheme
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calculations and is discussed further in Chapter IVwith the numerical
examples. If the difference between the K(l)'s is less than E, the
difference between two consecutive L(l),s is compared with E. When
this difference is also less than E, the computations proceed to
the next step. This procedure applies for computations in both the

physical and transformed planes.

7. Add ue and ie at Edge of Boundary Layer. This portion of the pro-
gram adds ue and ie at the mesh points beyond the last points com-

puted. This step is required so that the number of mesh points
across the boundary layer will not decrease by one at each step

downstream.

8. Compute vm+l n or V m+l n . The velocity v or V is computed
across the boundary layer using equations (3.16 or 3.18) and equa-

tions (3.19 or 3.20), respectively.

9. Test for Edge of Boundary Layer While Computing v or V. This
time the test for the edge of the boundary layer is simply to have
the same number of mesh points across the boundary layer as for the

u and i computations.

10. Compute 5* and Wall Quantities. The displacement thickness, *,
is computed from the appropriate equation of (3.50a) to (3.5Oc).

The wall quantities Tw and q. are computed from equations (3.48)
and (3.49), respectively. The shear stress parameter Cf Re
and heat transfer parameter St VRLx are computed using equations

(2.47) and (2.50).
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CHAPTER IV

ILLUSTRATIONS OF THE IMPLICIT DIFFERENCE

SCHEMES WITHOUT INTERACTION

The results for a variety of boundary-layer problems, using the

implicit difference schemes developed in the previous chapter, will now

be presented. Although Implicit Method II is superior, it has the dis-

advantage of using the transformed plane. Since Implicit Method I

solves the boundary-layer equation in the physical plane, it is inter-

esting to consider examples solved by this method and understand its

features. Four problems are investigated using Method I, and two

problems with Method Ii. in addition, the flow near the leading edge

of a flat plate is solved by both methods.

A. Implicit Method I

Five problems were solved with an IBM 650 computer using Implicit

Method I, which solves the boundary-layer equations in the physical

plane. The first two problems involve the flow along a flat plate where

the initial profiles are at one reference length from the leading edge

(x. = 1.00) In example one the wall temperature is assumed constant,

but with a value such that the wall is heated. The second flat plate

problem assumes the wall is insulated (zero heat transfer). In both

of these examples a linear viscosity law is used so that a direct compari-

son can be made with similar solutions of the boundary-layer equations.

Then in example three the flow along a wall with a ramp pressure gradient

is investigated and is compared with numerical results of Baxter. Since

Baxter uses Sutherland's viscosity law in this example, the present

example uses the same viscosity law. To study the influence of the

viscosity law on the boundary-layer solution, the fourth example con-

siders the flow along a flat plate with the same conditions as example

one except Sutherland's viscosity law is used. Finally, the flow near

the leading edge of a flat plate (x = 0.01) is investigated, since this

case will be considered with displacement thickness interaction in

Chapter V.
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1. Flat Plate Flow With Constant Wall Temperature. The boundary-

layer flow along a flat plate whose surface is heated and temperature

is constant has been investigated by FlUgge-Lotz and Yu (Ref. 11). An

explicit finite-difference scheme was used by Flgge-Lotz and Yu for

solving the boundary-layer equations in the physical plane. For this

example the numerical solution became unstable after a few steps from

the initial profiles. Also, the solution to this problem can be

obtained from similarity results and is readily obtained from Low

(Ref. 26). Since the similar solution is based upon a linear viscosity

law (Eq. 2.21), the same assumption is used in the numerical solution.

The following fluid properties, exterior flow, and wall quantity,

are used for this example:

M = 3 (4.1a)
00

T* = 389.99°R (4.1b)
00

= 1.4 (4.1c)

Pr = 0.72 (4.1d)

S* = 2160 R (4 .1e)

Tw /T = 2 (4.1f)

The pressure distribution has not been discussed previously. For a

flat plate without interaction the following relations are used:

Pe = P. (4.2a)

pe = 0 (4.2b)
e

As a consequence of the above relations, the exterior flow quantities

at the edge of the boundary layer are the same as the corresponding

quantities at the free stream conditions. The initial profiles are

obtained from equations (3o31a - 3.31d) and are shown in Figure 5.
This problem has been solved with Implicit Method I and no stability

difficulties are encountered. In these calculations step-sizes up to

one hundred times greater than the size employed by Yu have been used.
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The velocity profiles u and v and the enthalpy profile i obtained

from the numerical solution, after ten steps downstream of the initial

profiles, are shown in Figure 5. The similar solution to the boundary-

layer equations at the same distance downstream is also given.

In the numerical computations the parameter e and the step-size

must be chosen. In Chapter III, Section G.6 the computer program test

for the edge of the boundary layer was discussed and certain quantities

had to be less than E. The value of e was determined by decreasing

its magnitude until there was no influence on the displacement thick-

ness. For this problem c = 0.00001. Several step-sizes have been

used to solve this problem. The effect of changing Ly and nsx on

the boundary-layer characteristics is shown in Figures 6 and 7 respec-

tively. These characteristics were obtained from equations (3.48a),

(3.49a), and (3.50a). The boundary-layer characteristics, as given by

similar solution, are also shown in these figures. For the range of

step-sizes investigated there is very little influence on the conver-

gence of the numerical solution to the exact solution. It should be

noticed that the scales in these figures are greatly expanded and the

differences between the numerical and similar solutions are actually

very small. Since the initial profiles are only accurate to four

decimal places, there are initially errors in the boundary-layer cal-

culations and characteristics. These errors appear to decrease as the

computations proceed.

2. Flat Plate Flow With Zero Heat Transfer. At the wall either

the wall temperature or the heat transfer can be specified. Since the

previous example considered the specified wall temperature, this example

takes the case when the heat transfer is zero (insulated wall). This

example is the same as the problem in the previous section except for

the wall boundary condition. The fluid properties and exterior flow

are given by expressions (4.1a - 4.1e), and the relations (4.2a - 4.2b)

are also applicable for the pressure distribution. The initial profiles

are shown in Figure 9 and were obtained from equations (3.31).

The wall boundary condition for the case of a specified heat

transfer is given in equation (3.22d). The values for the coefficients
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L I ' ,l L' 2 ) , L(3), due to this boundary condition, are given in equationm, I m, 1 m, 1

(3.30). For the case of zero heat transfer, this boundary condition

gives the following results:

ira, = irm, 2  (4.3a)

L ( 1 ) = 0 (4o3b)m'l

L(2 ) = 0 (4.3c)

L = 1 (4.3d)m, 1

As previously mentioned, the derivative in the boundary condition (3.22d)

has been replaced by a rather crude approximation. By using two mesh

points beyond the wall in writing the difference quotient, a better

approximation for the derivative is obtained. For an insulated wall

the following relation results:

4 (4.4)
m,l 3 m,2 3 m,3

If n is set equal to two and u is set equal to zero (boundary

condition 3.22b) in equations 3.7 and 3.8, then urn, 3 can be eliminated

from the two resulting equations. As a result of these operations, the

following equation is obtained :

(B1 C2 - B2 C1 )m, 2 um 2 + (D1C2 - D2 C1 )m, 2 im, l + (E].C2 - E2 C1 )m, 2 im,2

+ (F1C2 - F2C1 )m,2 im,3 = (G1C2 - G2eC1 )m,2

(4.5)

Substituting equation (4.4) into the above equation (4.5) and

rearranging gives:

[3(FIC2 - F2C1 ) - (DIC2 - D2Cl)]m,2 iml = (G2C1 - GiC2 )m,2

+ (B1C2 - D2CI)m,2 um,2 + [(E 1 C2 - E2CI)+4(FIC2 - F2Cl)]m,2 im,2 (4.6)
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By comparing coefficients in the above equation with equation (3.26b),

the following is obtained:

L(l (G C -G C(4 7a)m,1- l 1 2l 1 1lC2)m,2

L(2) = A, (BlC2 -B (4.7b)m, C2 B2CI)m, 2

L3) =1 (EiC2 - E2C1 ) + 4(FIC2 - F2C1 )]m,2  (4.7c)

where

1/ 1 = [3(FIC2 - F2 Cl ) - (D1C2 - D2Cl)1m, 2

The flow along an insulated flat plate has been solved using the

different boundary conditions (4.3) and (4.7). In Figure 8 the wall

enthalpy is shown when the two different boundary conditions are used,

and the similarity result is also shown. The profiles across the

boundary layer at x = 1.10 arc shown in Figure 9. The numerical solu-

tion with boundary conditions (4.7) are compared with the similar solu-

tion in this figure. The boundary-layer characteristics for the

insulated flat plate are presented in Figure 10. The numerical results

with the two different boundary conditions are compared with the similar

solutions in this figure. From these results it is apparent that

boundary conditions 4.3 are indeed crude. Therefore, to approximate

the enthalpy gradient at the wall it is necessary to use at least three

grid points as was done for the boundary conditions (4.7).

3. Ramp Pressure Gradient. In order to investigate the influence

of the boundary-layer pressure gradient term on the numerical solution,

the flow along a wall with a constant wall temperature and a ramp

pressure gradient is considered. This problem has been solved by

Baxter and Frgge-Lotz (Ref. 1), using an explicit finite-difference

scheme with the Crocco transformed boundary-layer equations. The fluid

properties, exterior flow, and wall quantities are the same as the first

example and are given in relations (4.1). Since Baxter uses Sutherland's

viscosity law (Eq. 2.22), it is also used in this example. The pressure

and pressure gradient are the following
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Figure 8. Wall Enthalpy for Insulated Flat Plate (M = 3.0)
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Pe= 5 (x - 1) pu 2  (x >) (4.8b)

for the ramp pressure gradient case. Flow along a flat plate is assumed

upstream of x = 1, and the initial profiles given in Figure 5 are used

to start the calculations. Rather than use equation (2.40), the small-

disturbance form of this equation was used. The simpler equation is:

S 0 (pe/p - 1) (4.9)

In the finite-difference solution 6y = 1.0 and Ax = 0.001 or

0.0004. The latter value of the step-size was used by Baxter in order

to have a stable numerical solution. The parameter c used in testing

for the edge of the boundary wa- increased to 10 4 for this example.

The boundary-layer characteristics for a ramp pressure gradient

are given in Figure 11. The shearing stress parameter was obtained from

equations (2.47) and (3.48a), while the heat transfer parameter was

obtained from equations (2.50) and (3.49a). The displacement thickness

parameter is the ratio of the dimensionless displacement thickness at

any x to the value at x = 1.0. The displacement thickness is obtained

from formula (3.50a). The step-size must be the same size (Lx = 0.0004)

as used by Baxter in order to have reasonable agreement with his results.

Since the boundary-layer profiles are changing very rapidly, the trun-

cation error is more important than stability considerations in deter-

mining the step-size. As the truncation error in Baxter's and the

present method are of the same order, it is not surprising that the

required step-sizes are approximately the same for this example.

It should be remembered that the initial profiles are based upon a

linear viscosity law, while the numerical results use Sutherland's via-

cosity law, Near the start of the computation of the boundary-layer

characteristics, the influence of changing the viscosity law can be

seen in Figure 11.
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4. Flat Plate Flow With Sutherland's Viscosity Law. In example 3

the initial profiles were based upon a linear viscosity law, while the

numerical computation used Sutherland's viscosity law. In order to

investigate the influence of such a procedure on the boundary-layer

characteristics, example 1 is solved again using Sutherland's viscosity

law.

In Figure 12 the variation of viscosity with enthalpy for the two

viscosity laws is illustrated. For a heated wall and large Mach number

the linear viscosity law becomes a poor approximation for the more exact

Sutherland's law.

The boundary-layer characteristics for this example are given in

Figure 13. The results for the similar solution with a linear viscosity

law are from Low (Ref. 26), while those with Sutherland's viscosity law

are from Van Driest (Ref. 40). Two step-sizes were used in the numerical

computations and these results are presented in this figure. The

boundary-layer characteristics which are obtained from the numerical

solution with Sutherland's viscosity law tend to approach the similar

solution from Van Driest. The computations with the small step-size

seem to be approaching the results of Van Driest faster than the other

numerical solution. As this type of problem is considered again in

Section B example 1 of this chapter (See Figure 20), the computations

have not been extended further downstream.

5. Flow Near the Leading Edge of a Flat Plate. This example

considers the flow near the leading edge of a flat plate when the free-

stream Mach number is 9.6. The linear viscosity law is used so that

the results can be compared to the similar solution easily obtained from

Low (Ref. 26). The following fluid properties, exterior flow, and wall

.quantity, are assumed:

M = 9.6 (4.lOa)

T* = 82.34°R (4.lOb)

y = 1.4 (4.loc)

Pr = 0.72 (4.10d)
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S*= 198.6) R ( 4 .10e)

T w/Tad= 1 (4. lOf)

The wall temperature is specified by equation (4.10f) such that there

is no heat transfer in this example. The pressure distribution is still

given by equations (4.2) since this is flow along a flat plate. The

initial profiles are obtained from equations (3.31a - 3.31d) and are

shown in Figure 14. In this problem the test for the edge of the

boundary layer uses E = 10-4 .

In this problem the initial profiles are taken at xi = 0.01 and

the calculations proceed to x = 0.10. This is equivalent to starting

at xi = 1.00 as done in example 1 (Section A.1) but continuing the

computations until x = 10.00. Therefore a relatively large step-size

is required if the finite-difference scheme is going to be of any

practical value in this example.

Two step-sizes have been used to solve this problem and the

boundary-layer displacement thickness is used to illustrate the resulting

solutions in Figure l5 The similar solution is shown in this figure

also. This figure shows that the grid size is too large and hence the

truncation error has significant influence on the results. As the grid

size Ax is reduced, the solution appears to be converging to the

similar solution. When the numerical solution is to be sufficiently

accurate, the required grid size would become prohibitively small.

Another factor has been introduced which requires the grid size to

be small in this problem. In order to approximate the profiles as shown

in Figure 14 with sufficient accuracy, it is necessary to have a small

grid size &y near the outer edge of the boundary layer. Shown in

this figure is the numerical and similar solution at one step downstream

from the initial profiles. The numerical solution is greatly different

from the similar solution near the outer edge of the boundary layer.

The problem of reducing the truncation error and of increasing the

step-size near the outer edge of the boundary layer requires going to

Implicit Method II.
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Figure 15. Displacement Thickness for the Flow Near the Leading
Edge of a Flat Plate (M = 9.6)
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B. Implicit Method II

Three examples were solved with a Burroughs 220 computer using

Implicit Method II, which solves the boundary-layer equations in the

transformed plane. The first example is the same as the last case

considered in the previous section. This example illustrates that

Method II has a much smaller truncation error than Method I. Other

effects studied in this example are: the two methods of replacing the

continuity equation, integration formula for the displacement thickness,

value of E for test at edge of boundary layer, iteration of the solu-

tion at each step downstream, and type of viscosity law. In the second

example the flow downstream of a transpiration cooled region is investi-

gated. The wall in the region of interest has i w/i = 0.5. This

problem and the insulated wall case have been solved by Howe (Ref. 17)

using the numerical method of Baxter and Flugge-Lotz (Ref. 1). The

insulated wall case has been solved by Pallone (Ref. 34) with another

numerical method. This example allows an indirect comparison between

these numerical methods for solving the boundary-layer equations. The

third example illustrates that the implicit method can be used to solve

the boundary-layer flow along a wall with a variable temperature. The

specific case considered is a wall with a "hot spot" as this problem

has been solved by Baxter and Flagge-Lotz (Ref. 1).

1. Flow Near the Leading Edge of a Flat Plate. The same problem

as given in Section A.5 of this chapter is now investigated. The dis-

placement thickness of the boundary layer is used to illustrate the

influences of several parameters in Figure 16. In all parts of the

figure the similar solution of the boundary-layer eqaations is given to

indicate the desired result. In part (a) the result using Implicit

Method I for this problem as given in Section A.5 is presented for

convenience. Also in this part of the figure the displacement thickness

is shown for the case when the problem is solved in the physical plane

but with the difference quotients used in Implicit Method II. By using

the new difference quotients, the truncation error has been greatly

reduced. However, when the profiles are examined for this solution,

the numerical result still has some error near the outer edge.
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In Figure 16b the influence of transforming the boundary-layer

equations is illustrated. The displacement thickness, as a result of

solving these transformed equations, does not seem to be improved.

This numerical solution does approximate the similar solution profiles

closer than the physical plane solution, especially near the outer edge.

It should be remembered that all solutions have used Method A for the

continuity equation. In Figure 16c the influence of using the two

methods of replacing the continuity equation is shown. When Method B

is used with Implicit Method II the best numerical solution of the dis-

placement thickness is obtained. For this case the numerical profiles

are a good approximation for the similar solution results.

Several other items that have a smaller influence on the solution

of this problem have been investigated. In order to illustrate the

influence of these items, the displacement thickness is divided by the

similar solution displacement thickness at the corresponding value of

x. This displacement thickness ratio is given in Figure 17 for the

various cases studied. The numerical values have been connected by

straight lines to clarify the figure. The first item investigated was

the influence of the integration formula used in evaluating the dis-

placement thickness. The displacement thicknesses computed, using the

trapezoidal rule (Eq. 3.50b) and Simpson's rule (Eq. 3.50c), give

essentially the same result for this problem. Since Simpson's rule is

a better formula in general and is only slightly more complicated than

the trapezoidal rule, Simpson's rule is used with Implicit Method II.

The influence of E on the displacement thickness ratio is shown in

Figure 17. From this figure it is impossible to ascertain the better

value of E to use. To study the effect of E further, the velocity

profile near the outer edge is given in Figure 18. This figure gives

the velocity profile at x = 0.125 for the numerical solution with

two values of E and the similar solution is also given. This figure

shows that the smaller value of E results in a velocity profile which

is a better approximation to the similar solution.

Returning to Figure 17, another item that has been investigated is

the effect of iterating Implicit Method II at each downstream step.

In order to obtain linear difference equations certain quantities at
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(m + ) were replaced by known quantities at m.. (See Chapter III,

Section B.2). After the boundary-layer equations are solved as usual

for the unknown quantities at (m + 1), the equations are resolved with

the quantities at (m + 1) replaced by the average of the corresponding

quantities at (m) and (m + 1). By iterating in such a manner, the

truncation error should be reduced. This is the case as illustrated. in

Figure 17 where the solution was iterated once at each step. Since this

iteration almost doubles the computation time, it would be equivalent

to halving the step-size downstream. The results for the displacement

thickness ratio for this smaller step-size are given in Figure 17.

Although this result is closer to the similar solution than previous

cases considered, it is not as close as the iterated solution. However,

the iterated method has a small oscillation that does not occur when

the usual method is used.

The comparison between Implicit Method II (Transformed Plane)

and the similar solution is now completed by considering profiles and

shearing stress at the wall. For this comparison the results are

obtained by using continuity equation Method B with E = 0.001,

Ax = 0.0025, and L-Q = 0.00023288. 1 The initial profiles in the trans-

formed plane are given in Figure 19 and are obtained from equations

(3.33). The numerical and similar profiles at x = 0.125 are shown

in this figure. The two velocity and enthalpy profiles obtained by

both methods agree, as expected from the displacement thickness results.

In Figure 20 the shearing stress at the wall from the numerical solution

is given. This was obtained from equation (3.48b). The shearing stress

from the similar solution with linear viscosity (Ref. 26) is presented

in this figure for comparison with the numerical solution. Since the

initial profiles for the numerical computation were determined with a

linear viscosity law, the same law is normally used in the numerical

computations. Here, however, the numerical solution has been performed

with Sutherland's viscosity law and the result for the shearing stress

is shown in Figure 20a. The skin-friction parameter for this example

'his number for An occurs as AnLow is taken as a convenient
value in determining the initial profiles from equations (3.33).
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is given in Figure 20b. The numerical solutions obtained with the

linear and Sutherland's viscosity law are shown. In addition the skin-

friction parameter, as obtained from similar solutions for the two

viscosity laws, is given. The similar solution result with a linear

viscosity aw is obtained from Low (Ref. 26), while the result with

SutherlanId's law is obtained from Young and Janssen (Ref. 43). The

latter result is not obtained using the same conditions as the numerical

solution. The skin-friction parameter obtained from Young and Janssen

was determined with the following different conditions: T* = 1000 R,
M = 9.57, and variable Prandtl number. (See equations 4.10 for condi-

tions in present problem.) For the case with a linear viscosity law,

the larger error near the start can be attributed to the relatively

large grid size in this region. When Sutherland's viscosity law is

employed, the skin-friction parameter near the start is over corrected

as a result of the error introduced by the initial profiles. The skin-

friction parameter then becomes nearly constant but at a slightly higher

value than the similar solution. Some of this difference can be

accounted for by the different conditions employed in the two problems.

The heat transfer for this case is not presented since it is approxi-

mately zero as the wall temperature was specified to correspond to an

insulated wall.

2. Flow Downstream of a Transpiration Cooled Region. This

example is concerned with the flow downstream of a transpiration cooled

region. The flow conditions, fluid properties, and wall dondition

are the following:

M = 3 (4 .11a)
00

T* = 389,990 R (4.11b)
00

S= 1.4 (4.11c)

Pr = 0.72 (4.l1d)

S* = 2160 R (4.11e)

Tw/Tad = 0.5 (4.lf)
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The wall for this case is taken as a flat plate; hence, the pressure

gradient is zero. The injection region extends from the leading edge

to x = 1.0 and is such that the boundary-layer flow is described by

the similar solutions of Low (Ref. 27). Hence, the injection velocity

at the wall, vw, varies parabolically from the leading edge. The

initial profiles are obtained from equations (3.33). The f and g2

functions are evaluated with f(O) = 2 (Pv pu x/ = -1.0

from Low (Ref. 27). The initial profiles are based upon a linear vis-

cosity law and are presented in Figure 21. At the wall the transformed

normal velocity V is not zero for the initial profile as shown in

Figure 21c. Since the wall is solid downstream of x = 1.0, the velocity

V is zero for x > 1.0. In the test for the edge of the boundary layer

in the numerical computations, E = l0- 3. The viscosity law used in

these computations is indicated when the results are presented.

In Figure 21 the boundary-layer profiles for a linear viscosity

law are presented at x = 2.00 where the numerical computations were

terminated. There is very little change in the thickness of the

boundary layer in the transformed plane. However, there has been an

appreciable change in the shape of the profiles. The quantity pv is

presented in Figure 21c as it has a more physical significance while

V does not.

The skin-friction ratio has been employed to illustrate the solu-

tion of the boundary-layer equation for various conditions in this

problem. The skin-friction ratio is obtained by dividing the local

skin-friction coefficient by the following flat-plate value based upon

a linear viscosity law:

(Cf f(0) = 0 = 0.6641 VCRe (4.12)

The skin-friction ratio obtained from Implicit Method II with several

step-sizes of 6x is presented in Figure 22a. As the step-size Ax

is decreased, the truncation error should be reduced and the numerical

solution should be a closer approximation to the exact solution (see

Ref. 32). When Lx = 0.004, the results indicate that the truncation
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error attributed to ZAx is reasonably small. The step-size across

the boundary layer has been varied also. For the two values of A q

there is an appreciable change in the skin-friction ratio. However,

the truncation error due to A q is small for the smaller step-size

across the boundary layer. It has been estimated that the result for

the case when Ax = 0.01 and A I = 0.055192 will change about 1 per-

cent near x = 2.0 as the grid size goes to zero. In Figure 22a the

numerical solution by Howe, which uses the Flugge-Lotz and Baxter method

as given in Ref. 10, is presented. This result is based upon Suther-

land's viscosity law and the same conditions (4.11) are used in this

example. These two methods give results within 5 percent, which is

very good in comparison to other approximate methods for solving this

problem as discussed by Howe (Ref. 17). However, one would expect the

results to be even closer as the methods should be close to the exact

solution if the step-size is sufficiently small.

Since the initial profiles in this problem are determined using a

linear viscosity law, this problem has been solved with the same law

to eliminate any initial error. The result for the skin-friction ratio

is given in Figure 22b when Implicit Method II and Howe's method are

employed. The results for two grid sizes with Howe's numerical method

are presented in this figure. As the grid size is reduced, the skin-

friction ratio is decreased when Howe's method is used while the skin-

friction ratio is increased when the implicit method is used. Since the

results in Figure 22b are reasonably close, the two methods ould

become very close as the grid size is decreased. Since there is a dis-

continuity in certain quantities at the initial profiles, there are

unusually large errors introduced near the start of the computations.

The effect of these errors can, perhaps, contribute to any remaining

difference between the two methods with a very small grid size.

When the viscosity law is changed there is no significant variation

in the skin-friction ratio as obtained by Howe's method. The implicit

method indicates approximately a 5 percent decrease in the skin-friction

ratio when Sutherland's viscosity law is employed. Because of this

discrepancy, this problem has been solved using the explicit method as

described in Chapter III Section B.1. The results of the explicit method
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are in agreement with the results obtained with the implicit method.

It seems that the method employed by Howe is insensitive to the viscosity

law employed. This peculiarity of the numerical solution of the Crocco

form of the boundary-layer equations is discussed further in the next

example.

In Figure 22c the heat transfer parameter for this problem is

presented. It was obtained by dividing the nondimensional local heat

transfer rate for this problem by the same quantity for a flat plate

with a constant wall temperature. The latter quantity called

(q)f(0)=0 is the following for this problem and is based upon a linear

viscosity law:

(q)f(0) = 1 (4.13)

8.0 5458 T

In Figure 22c the heat transfer parameter results obtained with the

linear and Sutherland's viscosity law with Implicit Method II are

presented. The result for this parameter as obtained by Howe is also

shown and is computed with Sutherland's viscosity law. However, his

result is in closer agreement with the implicit result obtained with

the linear viscosity.

The displacement thickness is presented in Figure 22d for the

implicit results when the two viscosity laws are employed. There is

first a decrease in displacement thickness after the transpiration

cooled region. This kind of behavior has been predicted by Pallone

(Ref. 34) for this type of problem with an insulated wall.

As discussed previously, these examples provide an indirect

method of comparing several of the numerical schemes. However, this

comparison can be only approximate as different digital computers were

used, computation time is very sensitive to the accuracy obtained, and

slightly different problems were solved. A problem similar to the

present example, except the wall is insulated, has been solved with a

linear viscosity law by Pallone (Ref. 34). The same problem has been

solved by Howe (Ref. 17) with Sutherland's viscosity law. The two

methods give approximately the same result for the skin-friction ratio.
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Although one would expect some differences between the two results

because of the different viscosity laws, the peculiarity of the Howe

method discussed earlier can account for the results being nearly the

same. The computation of Pallone was performed with an IBM 704 computer

in 20 minutes. Since the computations went from x = 1.0 to x = 4.0

and the IBM 704 is approximately twice as fast as the Burroughs 220, the

Pallone method would probably require about 20 minutes with the Burroughs

220 for the present problem. The computation of Howe was performed

with an IBM 650.computer' fd required 7 1/2 hours. For the present

problem on the Burroughs 220 the Howe method would require about 90

minutes. When Implicit Method II is used, from 11 to 22 minutes are

required for the results obtained for this problem with the Burroughs

220 computer. When Sutherland's viscosity law is employed, approxi-

mately 50 percent more computation time is required than the results

obtained with a linear law. The more accurate results with the smaller

grid size take the larger computation time indicated. When the same

grid size is used as in the implicit scheme, the explicit method requires

about 27 percent less computation time. However, the truncation error

appears to be approximately the same when the grid size Ax for the

explicit scheme is 2.5 times smaller. Therefore, the Implicit Method II

requires less computer time than the explicit scheme with the same

accuracy. From the above considerations, this problem can be solved

with Implicit Method II as efficiently as any of the other methods.

3. Flat Plate Flow with "Hot Spot". To illustrate that the

implicit scheme can be used to solve boundary-layer flows with a

variable wall temperature, the problem solved by Baxter and FlUgge-Lotz

(Ref, 1) of flow along-a flat plate with a "hot spot" is now considered.

The same conditions are used so that a comparison of results can be

made. These conditions are:

m = 0.5 (4.14a)

T* = 389.99°R (4.14b)

7 = 1.4 (4.14c)
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Pr = 0.72 (4.14d)

s* = 216°R (4.14 e)

The following equation is used to specify the wall enthalpy for

1 < x < 1.0256 :

1 2 + o~ ___x__ 1 L.0256 - x3 (41ai 0 2o128) 0.0128 ad

For x > 1.0256, the wall enthalpy is

i = 2 + I .82 ie= 21d (4.15b)

As this is a flat plate problem, the pressure gradient is zero. When

the linear viscosity law is used, the constant C is determined using

the wall temperature upstream of the "hot spot".

The boundary-layer characteristics for this problem are presented

in Figure 23. The skin-friction and heat-transfer parameters have been

determined with Implicit Method II with the two viscosity laws. The

result of Baxter and Flgge-Lotz is presented in this figure and was

computed using Sutherland's viscosity law. In Figure 23a the value of

the skin-friction parameter for a flat plate without a "hot spot" is

presented. This result with a linear viscosity law was obtained from

Low (Ref. 26), while the result with Sutherland's viscosity law was

obtained from Crocco (Ref. 9). Far downstream from the "hot spot" the

boundary-layer characteristics should approach the flat plate similar

solution results. The pecularity of the Crocco finite-difference scheme

of numerical solution appears in this problem again. The skin-friction

parameter obtained by Baxter and Flugge-Lotz, which uses the Crocco

method, does not appear to approach the similar solution of Crocco.

However, the implicit solution with Sutherland's viscosity law appears

to be approaching the Crocco similar solution. When the linear viscosity

law is employed with the implicit method, the variation of the skin-

friction parameter is similar to the Baxter and Flugge-Lotz result. The
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shift in the skin-friction occurs because the step-size A n across the

layer is not sufficiently small.

In Figure 23b the implicit results for the heat-transfer parameter

are compared with the Baxter and Fltigge-Lotz results. The viscosity

law employed in the implicit solution has only a small effect on the

results. The implicit method predicts a higher peak with a shift down-

stream when compared with the Baxter and Flgge-Lotz result. This

difference is insignificant when compared to other methods of predicting

the heat transfer, and the conclusions of Baxter and FlUgge-Lotz are

still valid.

In order to investigate the closeness of the numerical and Crocco

similar solutions further downstream, the flow along the same flat plate

without the "hot spot" has been solved. The skin-friction parameter is

presented in Figure 23c. Two step-sizes have been employed and the two

viscosity laws have been used with Implicit Method II. For the skin-

friction parameter with the linear viscosity law, reasonable agreement

is obtained with the similar solution when the step-size is sufficiently

small. When Sutherland's viscosity law is employed, the implicit scheme

indicates a slightly larger value of the skin-friction than the similar

solution. The present problem has been solved with Sutherland's vis-

cosity law by Baxter and Fligge-Lotz (Ref. 1), but the computations

only extend a short distance downstream. This computation has been

extended further downstream, and the result for the skin-friction is

presented in Figure 23c.

The solution is coming closer to the Crocco similar solution, but

the process is very slow. Therefore, the Baxter and Fliigge-Lotz method

appears to be insensitive to the viscosity law employed in the examples

investigated.

For the Implicit Method II solution in Figure 23c with the larger

value of Ax, an oscillation of the skin-friction parameter occurs.

This is attributed to an error being introduced by the linearization

of the difference equations and propagated when the continuity equation

is replaced by Method B (see equation 3.20). After the two methods of

replacing the continuity equation have been studied, the following

statements can be made: (1) For Method A errors in V are only
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propagated indirectly by the influence on u and i at the next step.

(2) For Method B an isolated error in V will oscillate in sign as

the computations proceed and the indirect influence will also occur.

Therefore, Method B can give results with a small oscillation, but with

less over-all error.
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CHAPI'ER V

NUMERICAL SOLUTION OF THE BOUNDARY-LAYER EQUATIONS

WITH DISPLACEMENT THICKNESS INTERACTION

In this chapter only the boundary-layer flow along a flat plate

with a sharp leading edge will be investigated. However, the displace-

ment thickness interaction between the boundary-layer and external flow

will be included in the solution. The reasons for neglecting other

parameters that contribute to the interaction between the boundary-layer

and external flow were discussed in Chapter I.

In Hayes and Probstein (Ref. 14) the flat plate and wedge inter-

action problems have been discussed in terms of weak and strong pressure

interaction. The weak interaction region ( = MfC / e<l.)

occurs far downstream from the leading edge where the induced pressure

has a small effect on the boundary-layer flow, The more interesting

region is near the leading edge where the strong interaction occurs

( >>l). In this region the boundary-layer flow is greatly influenced

by the induced pressure caused by the viscous layer near the wall

changing the effective shape of the body. The strong pressure interaction

theory expands quantities in an asymptotic series in terms of the inter-

action parameter i. Hence, the boundary-layer equations are reduced

to simultaneous nonlinear ordinary differential equations for the zeroth-

order approximation while the higher approximations are linear equations.

Only the zeroth-order problem has been solved exactly with a linear

viscosity law and Prandtl number equal to one. For an insulated flat

plate at zero angle of attack, the first-order problem has been solved

approximately.

The results of the strong pressure interaction theory will be used

to obtain initial profiles. Also results of this theory will be com-

pared with examples solved numerically in this chapter. However, before

these subjects are presented, the method of solving the boundary-layer

equations with interaction is considered.
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A. Method of Solution

The essential difference between the boundary-layer flow without

and with displacement thickness interaction is that the pressure distri-

bution is known in the first case and unknown in the other. Therefore,

after the Howarth-Dorodnitsyn transformation, the boundary-layer equa-

tions (2.29 - 2.31) are applicable for this problem; except the pressure

gradient pe' is now an unknown. As the pressure along a body with

interaction cannot be computed directly, an iteration scheme is employed.

Two methods of iterating for the desired pressure distribution have been

considered.

One method initially assumes no interaction and the boundary-layer

equations are solved using the invisid pressure distribution on the

body. By using the displacement thickness resulting from this solution,

we know the effective shape of the body, and a new pressure distribution

(induced pressure plus inviscid pressure) can be determined. Next, the

boundary-layer equations are solved with the new pressure distribution

and then a new effective body is determined. The above procedure is

iterated until the assumed pressure distribution is sufficiently close

to the pressure calculated from the effective body shape. The initial

profiles for the first solution of the boundary-layer equations are

readily available for the case of flow along a flat plate. For the

other iteration solutions of the boundary-layer equations, there are

no accurate initial profiles. Because of this fact, this type of

iteration is not feasible for the numerical solution of the flat plate

interaction problem near the leading edge and is not considered further.

The other method of iterating for the pressure distribution assumes

that initial profiles are available for the case of interaction between

the boundary-layer and external flow. This seems, perhaps, to be a

severe hindrance. But for the flow near the leading edge of a flat

plate or wedge, the strong pressure interaction profiles can be used

when the interaction parameter, , is very large. (See the next section

for further discussion of the initial profiles.) When the pressure at

the next step downstream from the starting profile is assumed, the

pressure gradient term in the boundary-layer equations for Implicit

Method II can be written as:
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P P [(Pe/Pm) l (e/P) (5.1)

The pressure ratio at (m + 1) is estimated by the following:

Se/p 1.5 - 0.5 (Pe/P-)(5.2)

A e me
M-1

This equation results from taking the average of the pressure ratio at

(m) and the predicted value at (m + 1) when a linear extrapolation

formula is used. The superscript (1) indicates the first iteration,

while the subscript A indicates thd assumed pressure ratio at (m + 1).

When equation (5.1) is used in the boundary-layer equations (2.29-2.31),

the resulting equations are solved using Implicit Method II as presented

in Chapter III. From equation (3.50c) the displacement thickness is

determined at the next step downstream. The slope of the effective body

then can be determined. For the case of a flat plate, this slope is

approximated as:

em+l = m+l m (5. 3)

In order to determine the pressure along the body, the tangent-wedge

formula is used. Although the tangent-wedge formula is an approximate

relation, it is a reasonable assumption for this problem and is written

as:

1 72 2 -Y+1 2 1 + +1(54=+ +- +- (s. )
(FC4 m! e 4

The subscript (C) indicates the quantity is calculated after the

pressure at (m + 1) has been assumed, while the superscript (i)

indicates the iteration being performed. Using the slope em+1  with
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the tangent-wedge formula gives the pressure at the edge of the boundary-

layer at the next step downstream. As this calculated pressure is most

likely different from the pressure assumed initially, the above procedure

must be iterated until the two pressures are sufficiently close to each

other.

When the boundary-layer equations are solved at (m + 1), the corres-

ponding pressure can be calculated from the tangent-wedge formula (5.4).

The result of such a procedure is given in Figure 24 for x = 0.015.

The desired result is reached when the assumed and calculated pressures

are equal, and this occurs at the intersection of the two curves. This

figure shows that a rudimentary iteration procedure is unstable (the

calculated pressure is further away from the correct value than the

assumed pressure). Therefore, the usual iteration procedure of using

the calculated pressure for the assumed pressure in the next calculation

will not work. If two pressures (pe )iA and (e A

are assumed, then two pressures (pe/p.il) and (e/pj)i) can be

calculated. A linear extrapolation or interpolation, depending upon

the location of the points (i) and (i+l), is made as shown in Figure

24. The new estimate for the pressure ratio is written as

(ili_ )1 (i-1) A - (pe/pc)(il) (pe/poo M
(p /P.)Ai l = C A AC(5 5)

(/Peo)(1) - (pe/p) (i-l) + (pepoo (i) P
A A C C

Once the iteration procedure has been initiated, the above equation can

be used in determining increasingly accurate values for the pressure

ratio at (m + 1). The iteration is completed when the following

relations is satisfied:

p /P i) (pe/p) i) < (.6)le ooA e 00 C

The quantity cI  is a small number determined by the desired accuracy

and values will be given with the examples in Section C of this chapter.

Because of the round-off errors, equation (5.5) does not work for c
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approximately 10-4 or smaller. However, for the examples investigated

in this paper, equation (5.5) has been satisfactory.

The flow diagram for computing the boundary-layer flow with inter-

action is given in Figure 25. For greater details of various elements

of this flow diagram, see Figure 3. The new elements in Figure 25 are

discussed below and related to formulas presented in this chapter.

1. Input. The pressure ratio and displacement thickness at the

initial profiles must be supplied.

2. Program Constants. See Chapter III, Section G.1.

3. Estimate (p . Use equation (5.2) to determine this

quantity.

4. Compute Exterior Flow uantities. See Chapter III, Section G.3.

5. Compute p' • Use equation (5.1) to determine the pressure

gradient.

6. Compute u and il. See Chapter III, Section G.5 and G.6.
m+l,n m+l,n

7. Compute -* See Chapter III, Section G.10.
m+l*

8. Compute em+l The effective slope of the body is determined from

equation (5.3).

9. Compute (pe )(' ) . Use the tangent-wedge formula (5.4) to

calculate the pressure ratio at (m + 1).

10. Is e / (i) < el ? This test is used to determine
e oo - ~e' o0 C 1

when the iteration process is to be terminated.
11 st t (i+l)

1. Estimate (pp ) . A more accurate value of the pressure
e oA

ratio at (m + 1) is estimated using equation (5.5). In order to

use this formula for the first iteration, the following relations

are assumed:

(pe/P )A1( 0 ) = (Pe/P m (5.7a)

(pe/P )(0) =0 (5.7)

12. Compute V M n. See Chapter III, Section G.8.

13. Compute Wall Quantities. See Chapter III, Section G.10.
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B. Initial Profiles

For the flow over a wedge or flat plate with % > 1, the initial

profiles can be determined from the strong pressure interaction theory.

(See page 353 of Ref. 14). However, this theory is not valid near the

leading edge as the pressure goes to infinity. Oguchi (Ref. 33) gives

an estimate of the upstream limit of the strong interaction theory. For

the examples considered in this chapter. % 25 or x - 0.01 at this

limit. Therefore, the strong interaction theory should give accurate

initial profiles at x = 0.01.

Rather than compute higher-order approximations to the available

solution of the strong interaction theory, the zeroth-order solution is

used to approximate the initial profiles. The zeroth-order solution

with a linear viscosity law and Pr = 1.0 is obtained from Li and Naga-

atsu (Ref. 25). The following relations are used to determine the

initial profiles for the transformed plane in terms of quantities

given by Li and Nagamatsu.

= Qi 1Li (5.8a)

U =ue K'(i) (5.8b)

i = i G(r) + u2 [G(Li) - K' 2 Li)] (5.8c)

UeQ

V = x [- K (I ) + 1Li K'(j)] (5.8d)
4x

where
2 p e x '0

QI =  Re0*jpO
M2px

e

The above relations 5.8a to 5.8 c are easily obtained from Li and Naga-

atsu while relations 5.8d and 5.8e, require derivation. The procedure

used to determine the later relations is given in Appendix A Part 2.
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C. Examples Solved

The three examples presented are for flow along a flat plate with

the following conditions assumed:

M = 9.60 (5.9a)

T* = 82.34°R (5.9b)

= 1.4o (5.9c)

Pr = 1.00 or 0.72 (5.9d)

S* = 198.6°R (5.9)

i/0 7= 2198.79 (5.9f)

These values correspond to conditions in hypersonic wind tunnels. Either

the linear or Sutherland's viscosity law is used as indicated in the

examples. In the first and second examples the wall enthalpy is speci-

fied such that the wall is approximately insulated when Pr = 0.72 and

is insulated when Pr = 1.0 ( w/i ° = 1.0). In the first example the

pressure distribution is specified, while in the second example the

pressure distribution is unknown. The third example is the same as

the second except the wall temperature is specified such that iw/i °

- 0.15. The last two examples illustrate the iteration procedure for

solving the boundary-layer and external flow interaction problem. The

case of a heated wall has not been considered as initial profiles are

not readily available.

The initial profiles for these examples are determined from the

zeroth-order strong interaction theory as given by equations (5.8). The

initial profiles are determined at xi = 0.010 and are given with the

examples.

The boundary-layer equations were solved using Implicit Method II

on the Burroughs 220 computer. In the finite-difference scheme the
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test for the edge of the boundary layer uses e = 0.001 in the three

examples of this chapter. For the termination of the pressure iteration

process in the interaction problems (See equation 5.6), E = 0.001.

1. Flow Along a Flat Plate with Specified Strong Interaction

Pressure Distribution. Before the iteration procedure is used to solve

the interaction problem, the pressure distributions from the strong

interaction theory are used to solve the boundary-layer equations in

order to test the numerical scheme with strong pressure changes. This

theory gives the pressure for an insulated flat plate (Pr = 1.0 and

linear viscosity law) as

Pe /p. = 0.514 % + 0.759 + ...

where the first term corresponds to the zeroth-order theory and the

inclusion of the next term gives the first-order theory. The same

problem has been solved numerically using first the zeroth and then the

first-order pressure distribution. The initial profiles for this

example were determined using equations (5.8) and are shown in Figure 26.

Also shown in this figure is the zeroth-order similar solution and

numerical solution at x = 0.125 when the zeroth-order pressure distri-

bution is specified. The numerical solution should approach the similar

solution as the Machnumber goes to infinity. Even with M = 9.6 for
0

the numerical solution, agreement is obtained with the similar solution.

The effective slope of the body (5.3) can be determined from the

displacement thickness which is obtained from the numerical solution of

the boundary-layer equations. Then the tangent-wedge formula is used

to calculate the pressure along the flat plate. The result for this

calculated pressure, when the zeroth and first-order strong interaction

pressure distribution has been specified, is given in Figure 27a. This

figure shows that the first-order strong interaction theory gives a

close estimate of the pressure in the region investigated. The large

difference between the assumed and calculated curves near the start for

the first-order results can be attributed to using the zeroth-order

strong interaction profiles.
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The displacement thickness for the zeroth and first-order strong

interaction theory is given in Figure 27b. The numerical solutions for

the displacement thickness are given in this figure also. These results

were obtained by assuming the pressure distribution as given by the

zeroth and first-order strong interaction theory. Some of the difference

between the numerical and theoretical results can be traced to the method

of determining the displacement thickness in the strong interaction

theory. If the displacement thickness is determined exactly from the

zeroth-order profiles, the value at x = 0.13 is indicated by the star

in Figure 27b. The remaining error can be attributed to the fact that

an insufficiently large free stream Mch number was used.

2. Flat Plate with Nearly Insulated Wall. The previous problem

is solved again with the pressure distribution taken as an unknown.

The iteration procedure as presented in Section A of this chapter is

used to determine the pressure along the flat plate. The initial pro-

files for this example are obtained from the zeroth-order strong inter-

action theory and have been presented in Figure 26. When Pr = 1.0

and a linear viscosity law are employed, the numerical solution for the

pressure as a function of the interaction parameter is presented in

Figure 28a. The zeroth and first-order strong and second-order weak

interaction theories are given in this figure. All of the results in

part (a) are for a linear viscosity law and Pr = 1.00. The pressure is

reasonably close to the first-order strong interaction theory except

near the start of the computations. This error is because the zeroth-

order strong interaction initial profiles are employed. The problem

has been solved with Pr = 0.72 and Sutherland's viscosity law, but the

same initial profiles have been used. The results of these computations

are presented in Figure 28b along with experimental data obtained from

Bertram and Blackstock (Ref. 3). These data were obtained with a small

wall temperature gradient and with a certain amount of heat transfer,

but have been corrected to the case of an insulated flat plate. The

numerical results have iw/i ° = 1 while the experimental results have

i /io = 0.85. A new correction factor has been estimated from zeroth-

order strong interaction theory. From this estimate the experimental

data in Figure 28b should be multiplied by 1.10. With this correction

there is agreement between the numerical and experimental results.
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3. Flat Plate with a Cold Wall. This example is the same as the

previous problem except the flat plate has a cold wall (i /i ° = 0.15).

The initial profiles have been obtained from equations (5.8) and are

shown in Figure 29. The numerical profiles at x = 0.125 are given in

this figure, and Pr = 1.0 and a linear viscosity law are used in the

computation.

The boundary-layer characteristics for this example are presented

in Figure 30. Theoretical, numerical, and experimental results are

presented in this figure. All of the theoretical results are based on

a linear viscosity law and Pr = 1.0. The experimental results are from

Hall and Golian (Ref. 13) and iw/i0  0.14 for these shock-tunnel

studies. In part (a) of the figure the pressure along the flat plate

as a function of the interaction parameter is presented. When the

numerical computations use Pr = 0.72, the pressure ratio is in closer

agreement with the experimental data. The numerical skin-friction Tesults

are compared with the theoretical predictions in part (b). The skin-

friction parameter is reduced when the Prandtl number is changed from

1@00 to 0.72. The heat-transfer results are presented in part (c).

Only a few of the experimental points of Hall and Golian are presented,

but these indicate the average result. The experimental data indicated

a higher value of the heat-transfer parameter than the other results

predict. There is a damped oscillation in the numerical result with

Pr = 0.72. This can be attributed to using the initial profiles from

zeroth-order strong interaction theory with Pr = 1.0. There seems to

be very little effect of the Prandtl number on the heat transfer in

this example.
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CHAPTER VI

DISCUSSION AND CONCLUSIONS

The boundary-layer equations are solved in either the physical

plane or the Howarth-Dorodnitsyn transformed plane. These equations

are used rather than the Crocco form as they are convenient for the

interaction examples and introduce no problems when velocity profiles

with "overshoot" occur. Two implicit methods have been investigated to

solve the boundary-layer equations without displacement thickness inter-

action. Implicit Method II, which solves the Howarth-Dorodnitsyn trans-

formed equations with the Crank-Nicolson scheme, is superior to Method

I which solves the equations in the physical plane with the usual implicit

scheme. The truncation error for the difference quotients of Method II
2 2 2is of order Ax and 6q , while Method I is of order Ax and Ay

This allows a larger step of Ax to be used in Method II. When the

transformed equations are used, the velocity and enthalpy profiles

across the hypersonic boundary layer are readily approximated by equally

spaced points. For the same problem with the boundary-layer equations

in the physical plane, either a larger number of grid points are required

or unequally spaced points must be used to approximate the profiles.

For the transformed equations, similar solution results are in a form

such that initial profiles are readily obtained. When the equations

are used in the physical plane, interpolation between unequally spaced

points is required.

Wu's procedure of using freestream quantities except at the wall

for the initial profiles has been investigated (see Chapter III, Section

D). This would be advantageous for the present implicit scheme. Reason-

able results can be obtained if the proper grid size is used and the

proper value of the normal velocity is chosen. The Wu type initial

profiles must be used with care as the appropriate values of these

quantities are difficult to ascertain.

A simplified analysis has been employed to show that Implicit

Method II is stable without any restrictions on the grid size. The

results obtained in this investigation corroborate this conclusion.
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However, oscillations can occur in the transformed normal velocity, V,

when Method B is used to replace the continuity equation. The over-all

error is still less with Method B than with Method A. This oscillation

in V appears to be introduced by the error produced in the lineariza-

tion procedure. When small Ax steps are used, the oscillation is not

detectable. The truncation error due to linearization can be reduced

by iterating at each step downstream rather than reducing the step-size

Ax.

With the implicit methods the following type of first-order com-

pressible boundary-layer problems have been solved: wall with varying

temperature, specified heat transfer along the wall, pressure gradient

along the wall, and flow downstream of a transpiration cooled wall.

The implicit method should be a useful method to solve more involved

boundary-layer problems where several of the above events are occuring

simultaneously.

In solving these problems the step-sizes across and along the wall

have remained fixed. Since the number of points across the boundary

layer usually increase as the computations proceed, the computer program

can be written such that the points can be reduced when the number

becomes excessive. Generally, one wants the number of points to remain

constant so that the truncation error remains approximately the same

throughout the computations. Also, the step-size along the wall should

vary depending upon the rapidity with which the profiles are changing.

Possibly by observing the rate of change of the shearing stress at the

wall, the step-size Ax could be varied to keep this quantity within

certain bounds.

In Chapter I several numerical schemes for solving the compressible

boundary-layer equations without interaction were discussed. Some of the

methods are: (1) Pallone's method of reducing the boundary-layer equa-

tions to ordinary differential equations, (2) Wu's explicit finite-

difference scheme in the transformed plane, and (3) Baxter and FlUgge-

Lotz's explicit, and Kramer and Lieberstein's implicit finite-difference

schemes with the Crocco boundary-layer equations. Results of this

investigation indicate that Implicit Method II requires less computation

time than the other schemes, except possibly Pallone's method where the



time is nearly the same (See example B.2 in Chapter IV for comparison

of computation times). Pallone's method is probably not-exact in any

limit as discussed in Chapter I. However, Implicit Method II becomes

closer to the exact solution as the grid size is reduced. Recently a

rapid and precise procedure has been developed and studied by Smith and

Clutter (Ref. 44) for solving the incompressible boundary-layer equations.

This procedure is similar to the method proposed by Manohar which is
discussed in Chapter I. The boundary-layer equations are reduced to an

ordinary differential equation that is solved across the layer at

succeeding steps downstream. Smith and Clutter are extending the method

to the more complex case of compressible flow. It is impossible to

predict at present how this procedure will compare with Implicit Method

II.

The boundary-layer equations with displacement thickness interaction,

which occurs when second-order boundary-layer theory is considered, have

been solved by an iterative procedure with Implicit Method II. The

zeroth-order strong interaction profiles are used to start the numerical

computations of the boundary-layer flow near the leading edge of a flat

plate. After a transition from the initial profiles, the numerical

results are in agreement with weak and strong interaction theory. For

the insulated wall, the first-order strong interaction theory is slightly

different from the numerical result. The numerical and experimental

results are in reasonable agreement. When Pr = 0.72, there is closer

agreement between the numerical and experimental results for the pressure

distribution on the cold flat plate. Even closer agreement with experi-

mental results should be obtained when Sutherland's viscosity law is

used. Before such computations are performed, it would be desirable to

obtain better initial profiles. Initial profiles from first-order strong

interaction theory should be sufficient and these profiles can be ob-

tained. Then the problem of displacement thickness interaction on wedges

and flat plates at angle of attack can be solved.

If the methods developed in this report are employed or extended,

several interesting boundary-layer problems can be solved. Two-dimensional

flows starting with stagnation-point profiles can be solved. Also,

boundary-layer flows near the stagnation point of axisymmetric bodies
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can be studied. For these flows the finite-difference approach becomes

even more important as similar solutions are only valid at the stagna-

tion point. When the methods developed in this investigation are

employed, binary or chemical boundary-layer flows can be studied. Also,

the results of this report can be utilized in studying the other inter-

action effects (vorticity, curvature, etc.) between the boundary-layer

and external flow.
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APPENDIX A

DERIVATION OF FOBMJLAS USED TO CALCULATE

INITIAL VELOCITY AND ENTHALPY PROFILES

1. Flat Plate Without Interaction

a. Physical Plane. The profiles for a flat plate in the

physical plane were obtained from Low (Ref. 26). The distance y,

velocity u, and enthalpy i are easily obtained from Low by appro-

priate notation changes. To obtain the formula for the velocity v,

certain mathematical operations have to be performed and these are

presented below. From Low the following relations are obtained:

v fR e e e)v = - -
p L* xy = constant

L*
L* Qx) f6 nLow) = *(x,iLow) (2A)

where Cx

TLOW 
= Low (x,Y) and Q =2 -

Pe Ue

Therefore the following relation exists

_ _ + - OA )LLw (w

yx Y x Low LwxY

where

1 L* Q
Sf f(_Lw) (4A)

x Low -
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- L f ~ ( (5A)*T 2 Low

Now must be determined and the relation for y(n X) is used
y

y = Q(x) g(ow) (6A)

The total derivative of y gives

dy xdX + dniW

and for constant y, dy = 0. The above relation is solved for the

desired derivative

d_ _ _I o 1 ____Lo _ (7A)
dx Y T w 2x go (LOW)

%6w

Using relations (3A), (4A), (5A), and (7A) with (IA) results in

PUe f' (Dw) g(Tw) )Q

v ="f (TIow (8A)4xp go (nIw)

Since p can be written as

Peie
p = ee = hI( w)

equation (8A) becomes

v= ueQ [f(qi.w) g(Tn ) -(iow)g'(n Low)] 9A)

4x

b. Transformed Plane. The profiles for a flat plate in the

transformed plane were also obtained from Low (Ref. 26). The formulas

for the velocity u and enthalpy i are the same as those for the



physical plane. However, the relation between the coordinates normal

to the wall has changed. In Low the similarity variable is given as
Y

ILOW = Yf (P/Pe)dy (10A)

0

When the above relation (10A) and the transformation (2.26) are used,

the following is obtained:

= Pe Q TLow (11A)

The transformed velocity V can be written as

V = pv + u = p'v + peuQ ( + Peu 7Low (12A)x e Tx Low e LoTX

where dp /dx = 0, since only a flat plate is being considered. The

use of equations (TA) and (8A) in equation (12A) gives

= PeuQ[ ) qLow - f("Low) (13A)
4E

2. Flat Plate With Interaction. The zeroth-order strong inter-

action initial profiles for flow along a flat plate were obtained from

Li and Nagamatsu (Ref. 25). In the zeroth-order strong interaction

theory M >> 1 and u - u . Although these velocities are approxi-e e

mately equal, the velocity at the edge of the boundary layer as deter-

mined from the pressure distribution is used in computing the initial

profiles. This is done because u varies in the numerical computa-e

tions. The pressure for this case is given as

Pc/Poo P(o) )

or

±dP = - 1/2x (14A)
pe dx
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Again the velocity u and enthalpy i are easily obtained for

the initial profiles from Li and Nagamatsu and are not considered here.

There is however more work required to express the coordinate r and

the velocity V. The coordinate related to the distance normal to the

wall is given by Li and Nagamatsu as

U. c* L*
e Pe p dy (15A)nLi * -I
T ffe Ncee

Te Pe 0 *

The transformed coordinate n, as given by equation (2.26), becomes the

following when (15A) is used.

T p N C ie*e e 0o 0
r oq~ -- Q B~i(16A)

u * L ~
e p

p0

A more convenient form of the expression for Q will now be obtained.

When the definition of N from Li and Nagamatsu and the fact that

Me >> 1 are used, equation (16A) yields

R C i± x(1A

= 2 T e p e U(e (A)
e

With the equation of state p = R p T , the relation

2 22T/lT = "M/M

and equation (14A), equation (17A) simplifies to

2 Pe (18A)

Now the transformed velocity V as defined by equation (2.28) is
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related to quantities of Li and Nagamatsu. The following expression for

p y is easily obtained from this reference.

PV d eQ K(ILi ) + - - K(nLi) + K'(ILi) (19A)

i[edx N dx xJ

From equation (16A) the derivative /. x can be determined

l dN 1 dp 1 dT 1 due)

-- = x N dx pe dx T dx u x

From Li and Nagamatsu we obtain the following when the zeroth-order strong

interaction assumptions are employed.

1dN
- = 3/4x
N dx

1 dp
de = _ 1/2 7 x

p dx

1 dT
- -- = - (y- l)/2 7x
T dx

e

1 due = (21A)

u dxe

When equations (19A), (20A), and (5.8b) are used in equation (2.28) for

V and the resulting expression simplified with equations (21A), the

transformed velocity becomes

v = [K(nLi) + TILi K'(nTLi] (22A)
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APPENDIX B

Verification of Method of Solving

Difference Equations

The method of solving the difference equations (3.7 and 3.8) is

presented in Chapter JItItSetionC.2. However, certain relations were

stated to exist without proof and these will now be considered further.

The following discussion is essentially an elaboration of pages 178 to

180 of Richtmyer (Ref. 38) in order to clarify certain questions.

Consider the following linear algebraic equations (equivalent to

difference equations 3.7 and 3.8):

A1  un. 1 + B1  un + C1  un+1 + D1  in.1 + E1  i n + Fl in+ 1 =G 1
n n n n n n n

(2 <.n < N-l) (lE)

A2 Un.l + B2  un + C2  un+1 + D2  in_1 + E2  i n + F2  in+ 1  G2
n n n n n n n

(2B)

Let wn i then equations lB and 2B becomeLetn In

Xn wn-i + Yn wn + Zn 'n+1 gn (B)

where

n n n n n
wX]Zn = :
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L n nj nj

The boundary conditions for a very general case can be written as

Y1 wl + Z 1w2 '2 gl (4B)

(5B)XN "'N- I + YN w"TN gN B

where

[Yi1 N Xi

] (21)  z(2)I (21) (22)

conditon L (3 21 anC322) gietef Lwn o h bv arcs

z 1)Z (12- Y (1) Y(2

1  1 [N N

(21) 1 j Li N N

(2 (2)

For the case of a specified wall temperature distribution the boundary

conitins(3.22a and 3.22c) give the following for the above matrices:

Z,= YN I1
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91 [e

gl ] gN i]

where I is unit matrix and 0 is zero matrix. The boundary condi-

tions (4B and 5B) and the system of equations (3B) can be written as

Ywl +Z l '2 = gl

X n W n-1 + Yn w n + Z w n+, = gn (2 < n < N-1) (6B)

XN + YN WN =gN

The above can be written in matrix notation as

N =R (B)

where

Y1  Z1

X2  Y2 Z2

X3 Y3 Z3

p=

XN- YN-1 ZN-1

XN YN

1,9

w2 92

W= w3  R = 3

wN gN

N12



Now P may be decomposed into two triangular matrices

P = MN (8B)

where

Mi

X 2 M2  FMc11 M(12)l

M3 3 , M =

" M(21) M(22)

XN MN

I N1

I N2  3Nn11) N(12)

n N 1 N - (22)

" n

Therefore., the following relations exist:

Mh =Yn " Xn n-1  2 < n.<N

Nn  M Zn  1 < n < N-1 (9B)n n n- -

Define a new column matrix, U, such that

Kl= R (lOB)

where
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U Iu1

~Un

LuN

and the following relations exist:

u 1 lg(11B)

Substitute equations (8B) and (lOB) into equation (7B) and the follow-

ing is obtained:

NW = U (12B)

When the above matrix equation is written out, the following relations

result:

wN =UN

wn = Un - n+1  < n< N-1 (13B)

where U1 = Yi gl

NI = Yll ZI

Un =  
-Yn" Xn Nn-il] -  [gn- Un-1 Xn]

Nn = [Yn - Xn n-i ] ' I  n

If the matrix equation (13B) is written out, the resulting relations

are

u U - N(1l) u - N(12) i

i U(2) N (21) un N - ;) (14B)
n " n n Un+1 "n n+

-l -



which shows that relations (3.23a and 3.23b) are valid. The following

relations are obtained by using (13B) with the wall boundary conditions

(4B):

U~l) (Y ~ (22) g (1) - (12) g (2)) K(1)

1 A2 1 11 ~

U(2) Y .(21) (1) ' (22) 9(2)) = L41j

N(11)= ~(22) Z(11) Y (12) Z(21)) = - K (2)1 A2  "1 1 m,l (15B)

(r2)_ = 1 2(y (22) (12) - Y (1 2) Z(22)) 3

1 ( 2  -21) 4(11) + 22) (21)) L(2)
N(1 A2+ 1 1 m, 1

N(22) ( 21) Z(21) + Y(22) Z(22)) L(3)
N1 &2 Y1. 1 1 1 m, 1

where A2=l(11) Y (22) - Y (12) Y (21))
A2t/Y

12
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